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Preface

The purpose of this thesis was to investigate a method

of extending the range of identification of nuclear sources.

* The method was centered on Bayes' theorem, and the results

were compared with the method of photopeak identification,

which is perhaps the most common method used today. The

Finite Element Method was used to transport the source

spectra out to various ranges and Bayes' theorem, in

conjunction with various statistical distributions, was used

to analyze the results.

I would like to thank Dr. Larry McKee for sponsoring

this thesis topic, and for his patience while I stumbled

through some of the rough spots. I would also like to thank

Dr. Donn Shankland for the countless hours spent helping me

with statistical distributions, the Finite Element Method,

and the Harris 800 operating system. Without him, none of

this work would have been possible. In addition, I must

express my gratitude to Mr. Seth Tuuri, for asking the

fundamental questions that keep basic research alive.

Lastly and most importantly, I thank my wife and fellow

classmate LeAnn, for sharing the frustrations and

unreasonable hours along with me.
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Abstract

This research effort studies the application of Bayes'

decision theorem to extending the range of remote

identification of nuclear materials. The Finite Element

Method was used to develop a radiation transport code which

was used to reconstruct a group of three sample sources at

distances of 50, 100, 200, 300, 400 and 500 meters. Both the

Poisson and multinomial distributions were then used to

simulate measured sources in a low count environment at these

six ranges. Bayes' theorem was applied to the resulting

measured sources to test for positive identification.

The results show that a low resolution detector can

increase the range of remote detection an average of 100

meters when compared with the method of photopeak

identification. Bayes' theorem is unable, however, to

identify sources not contained in the library of known

sources. - .i " . , , .,
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IDENTIFICATION OF NUCLEAR MATERIALS FROM REMOTE DETECTION OF a
CHARACTERISTIC GAMMA RAYS

I. Introduction

Background

This thesis addresses the problem of identifying

specific radioactive sources by examining their

characteristic gamma ray spectra. The primary effort will be

to develop a technique of extending the range of reliable

detection of nuclear materials.

Normally, the analysis of characteristic gamma ray

spectra involves matching the photopeaks of the given

spectrum with those present in the spectra of known isotopes

for the purpose of identifying the constituents of the

source. Such identification of nuclear material is of

interest in order to learn the nature of given sources, that

is, to identify the 'ingredients' of a nuclear source.

However, current methods which use photopeak analysis for

identification purposes are of limited value once

downscattering of the peak energies has occurred.

In order to be of practical benefit, the identification .,

of nuclear materials must consider the non-ideal case of

remote detection. In other words, the given gamma ray

source spectrum must be examined at a distance and therefore,

will have been transported through the atmosphere for a

predetermined distance. Transporting such a spectrum through



air introduces a number of complications due to the

interaction of photons with molecules and atoms in the

earth's atmosphere.

By interacting with the particles of the air, photon

P energy is degraded by three main processes: the

photoelectric effect, compton scattering, and pair

production. The importance of each process depends on the

initial energy of the photon. It is important here to

realize that the compton scattering process is responsible

for degrading the ideal (untransported) gamma spectrum by

'smearing' the energy of the photons over a wide range of

values. Therefore, Compton scattering is the primary

mechanism for the degradation of gamma photopeaks in this

problem.

The Problem

This thesis will study the ability to discriminate

between different gamma ray source spectra by using Bayes'

theorem. Bayes' theorem will be employed as a decision aid

to assess the probability of having a certain source, given

the transported spectrum. By plotting the probabilities as a

function of distance from the source, we can determine the

reliability of Bayes' theorem as a correlation technique for

extending spectral identification beyond the current

limitations of photopeak analysis.

Simply stated, this thesis will test the assumption that

Bayes' theorem will work at distances from the source where

2



less than ideal circumstances include measuring a given

source once at extreme range with a small number of counts

collected.

Methodology: the Finite Elements Method

The method used to approximate the solution to the

diffusion equation is the Finite Elements Method, It was

chosen because of its accuracy in comparison to other methods p

such as the Method of Integration and it is at the same time

less complicated to program than more advanced methods (8).

In general, the diffusion equation is expressed as

-V.(DVF) + EaF S (1)

where the variable D is the diffusion coefficient, Z ais the

macroscopic absorption cross section, S is the source

function, and F is the fluence. Also, it is important to

note that

D tr (2)

where, Ztis the macrosopic transport cross section. The

Finite Elements Method assigns a penalty function given by

P(F) = dV(DVF.VF + ZaF2 - 2FS) (3)

16

* . * * .. * - *



Overview of the Approach

The radiation transport problem will be solved by

implementing a numerical solution to the diffusion equation.

The diffusion equation will then be used to solve for the

scattered fluence contribution of each ciergy group in each

source. This scattered, or diffuse solution (including

downscattering and inscattering contributions) will be added

to the uncollided fluence (virgin fluence) solution of each

energy group, resulting in a value of total fluence for each

energy group.

By solving the diffusion equation for each library

source at a number of different ranges, the reference sources

are arrived at, which will be discussed later in this

chapter. As the distance increases from the source, the

uncollided fluence drops off exponentially (see appendix A),

and at some point, there is an extremely small contribution

to the solution due to the uncollided fluence, but still a

sizable contribution from the diffuse (collided) fluence. In

other words, the further away from the source the measurement

is taken, the larger is the percentage of diffuse fluence.

At some very large distance then, all the photons detected

will have been scattered at least once, and therefore no more
p

uncollided fluence is present. The concept of using Bayes'

theorem as an analysis tool is based on using the diffuse

solution in addition to the uncollided solution to identify

sources measured under less than ideal circumstances. These

15
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III. Transport of Source Spectra

In the last chapter, a number of source spectra were

introduced, based on high resolution data obtained at the

surface of each source. Recall that the spectral

distribution for each source was given in counts per gamma

photon per unit energy, or alternately, in counts per photon

per channel (each energy group representing a channel). In

this chapter, the methodology will be developed to transport

each of these library spectra to any given distance away from

the original source. The results of the radiation transport

of each of the three library sources will be presented at the

end of this chapter.

0

Assumptions

In order to simplify the radiation transport problem

into a manageable one, the following assumptions are made:

(1) The source photons are transported through

homogeneous air.

(2) The source and the detector are located

at sea level.

(3) An ideal detector is assumed, so that all photons

reaching the detector are counted.

(4) The fluence of photons is radially symmetric

(no angular dependence).

14
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TABLE 11-3

Relative Intensity Distribution of Library Sourccs

(counts /KeV /photon)

Group Number Source A Source B Source C

1 0.0 0.0 0.0

S2 0.0 0.0 0.0

3 0.0 0.0 0.0

4 0.0 0.0 0.0

5 0.0 0.0 0.0

6 4.39E.-7 4.74E-7 2.93E-7

7 1.58E-6 1.81E-6 1.67E-6

58 4.99E-6 1.61E-6 4.21E-6

9 6.39E-6 9.36E-7 0.0

10 2.12E-5 9.81E-7 6.88E-6

*11 5.OOE-5 3.53E-6 0.0

12 1.23E-4 6.76E-5 1.04E-5

13 2.58E-3 3.95E-4 6.38E-5

14 3.06E-3 1.91E-3 1.28E-4

15 4.46E-4 1.87E-3 1.83E-3

16 5.09E-4 3.24E-3 4.43E-3

P 17 5.16E-4 2.69E-3 4.82E-3

18 3.27E-3 2.24E-3 3.34E-3

12



TABLE 11-2

* Relative Intensity Distribution of Library Sources

(counts / photon)

*Group Number Source A Source B Source C p

1 0.0 0.0 0.0

*2 0.0 0.0 0.0

3 0.0 0.0 0.0

4 0.0 0.0 0.0

*5 0.0 0.0 0.0

6 2.20E-4 2.37E-4 1.47E-4

7 7.92E-4 9.06E-4 8.35E-4

*8 1.70E-3 5.46E-4 1.43E-3

9 2.11E-3 3.09E-4 0.0

10 6.99E-3 3.24E-4 2.27E-3

*11 1.OOE-2 7.07E-4 0.0

12 2.47E-2 1.35E-2 2.08E-3

13 5.16E-1 7.90E-2 1.28E-2

14 3.06E-1 1.91E-1 1.28E-2 1

15 4.46E-2 1.87E-1 1.83E-1

16 5.09E-2 3.24E-1 4.43E-1

17 2.58E-2 1.34E-1 2.41E-1

18 9.80E-2 6.73E-2 1.OOE-1



TABLE II-1

* Energy Dependence of Detector Channels

Group Number Energy (KeV)

1 8000 - 10000

2 6500 - 8000

*3 5000 - 6500

4 4000 - 5000

5 3000 - 4000

6 2500 -3000

7 2000 - 2500

8 1660 -2000

4P 9 1330 -1660

10 1000 -1330

11 800 - 1000

*12 600 - 800

13 400 - 600

14 300 - 400

fw15 200 - 300

16 100 - 200

17 50 - 100

18 20- 50

10



"detector" is provided in table II-1. The 18 gamma-group

"• cross section data file is attached in appendix B.

The second step involved totalling the counts contained

in each of the newly defined eighteen channels for each

* source. In addition, the background data was subdivided into

the eighteen channel structure.

Finally, the background was subtracted from each of the

* sources, and the total number of counts was determined for

each. The relative intensity of each source was determined

by dividing the number of counts in each channel by the total

number of counts for that particular source. These relative

intensities are provided in Table 11-2. The final library

spectra are pictured in figure 1, and a listing of the

" relative intensities in counts per KeV per photon are given

in table 11-3.

As can be seen in figure 1, all three sources have

*O identifying features that makes each one unique. Sources B

and C show the most similarities with respect to each other,

and can be used as a benchmark during the analysis section,

C as mentioned earlier. As the transport distance increases,

downscattering of gamma photons should make sources B and C

'converge' to a common spectrum, whereas source A should

maintain its unique identity for larger ranges.

In the next chapter, the results of the radiation

transport code development will be used to generate the

measured and reference sources, based on the library sources

presented in this chapter.

-. .- - . ..-.--. ' . " ' . . . . . . " '
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photopeak identification requires that a photopeak be at
-0 least three standard deviations above the background level

for positive identification (three sigma being 99.7 percent

probability of certainty). Please reference appendix A for

0• more details on this subject.

Some notable photopeaks observed in the high resolution

specta include the 767 KeV and 1001 KeV lines from 238U and

0 the 375 KeV and 414 KeV lines of 239Pu. Numerous other

photopeaks from other radioisotopes contribute to the overall

relative intensities in each channel.

The second criterion listed above will test how Bayes

Decision Theory can discriminate between two similar nuclear

sources, in contrast to two sources which have dissimilar

* spectral features. In addition, a fourth source will be

introduced, which will be different from all of the library

spectra, in order to examine the effects of an "unknown"

source on the analysis.

Creation of the Low Resolution Sources.

Having selected the three high resolution spectra (in

line w'th the above criteria), the task remains to translate

these into the three low resolution library spectra for use

in this problem. This was accomplished in three basic steps.

First, the high resolution spectral data was divided

into an eighteen energy group structure, which was used in

thib problem. The eighteen group structure was chosen

(because the gamma photon cross section data was readily

available (14). The energy structure of this low resolution

8



spectra were obtained using a high resolution Germanium

detector, and exhibited detailed line structure and continuum

levels.

All of the above mentioned measurements were made within

* one meter of each source, and each source was enclosed within

a container. Therefore, the spectra represent the

characteristic source spectra taken at the surface of the

* source, and some downscattering of the photons has already

occurred. The library sources derived from this data

therefore represent each spectrum taken at the surface of

eeach nuclear source.

Generation of Library Spectra.

Selection of the High Resolution Sources.

The three library sources were composed using the data

discussed above. These library spectra were taken directly

from three of the measured (high resolution) gamma spectra,

based on the following criteria:

(1) Each source should contain discernible photopeaks

(at least three standard deviations above the

background).

(2) Two of the sources should have some similar

spectral features and relative intensities, and

the third should not strongly resemble the others.

Using the first criterion will allow for a contrast with

the method of photopeak identification, which classifies

nuclear materials by identifying specific (characteristic)

lines in the spectrum. As mentioned above, the method of

7



II. Source Selection

The first order of business in this problem is to

identify several source spectra that will represent the gamma

ray signature of different nuclear materials. These source

spectra, or "library spectra," will then be used to test the

feasibility of Bayes Theorem as a remote identification tool.

The Library Spectra

Method of Selection.

There are two possible approaches to the source

selection process. In the first approach, the library

spectra are chosen to represent the gamma spectra of specific

P radioisotopes, that is, each source is composed of a simple

combination of radioisotopes, with the intensity levels

determined arbitrarily. Using a second approach, the library

* spectra represent actual nuclear materials. By using the P
second method, the intensity levels of the library spectra

are more realistic, having been taken from actual

4measurements of different nuclear materials.

The second method of source selection was used in this

research project, in order to more realistically assess the

utility of Bayes Theorem as a method of remote source

identification.

Spectral Data.

A number of measured gamma spectra were studied in order

to derive three library spectra. All of the high resolution

6 -



laboratory or in the field. In order to make this a

* manageable problem, some limitations and assumptions had to

be incorporated.

First of all, the source spectra are transported through

* air only, and not through such materials as might be found in

a real transport problem. Secondly, the detector counting

times are determined so as to give a predetermined spectral

* intensity, whereas in reality, this flexibility may not exist.

Thirdly, the theoretical detector has a collecting area of one

square centimeter, and is equally sensitive to all energy

groups. Finally, it must always be remembered that the Finite

Elements Method itself is only an approximation of the

transport solution, not an exact (analytic) solution.

* The assumptions made in this problem are outlined in

detail in chapter 3, which discusses the transport phenomena.

LAYOUT OF CHAPTERS

The chapters are organized in the order of the subjects

presented in this introduction. Chapter 2 begins with the

selection of the sources, chapter 3 covers the transport of

the sources, and chapter 4 completes the solution with a

detailed presentation of Bayes' theorem and the counting

statistics. Chapter 5 discusses the results and compares them

with the method of photopeak identification, and the last

chapter outlines the conclusions and recommendations,

including a discussion of the applications of this method to

'real world' scenarios.

5

' J



of the ideal detector. Initially, the Poisson distribution

* will be used, under the assumption that all channels of the

detector collect counts independently of each other

(statistically independent). In order to test the

* sensitivity of the analysis, a multinomial distribution will

be used instead of the Poisson distribution, this time under

the assumntion that the detector channels are statistically

* interdependent.

Finally, the fourth part of this thesis problem entails

writing a subroutine which uses Bayes' theorem to examine the

* transported spectra at any given distance from the source and

output the probability that a particular spectrum is that of

"Source A" given the transported spectrum. This is repeated

• for all sources (Source B, etc.) for the measured spectrum at

a number of ranges and the results plotted. The Bayesian

source liklihoods can be determined at ranges beyond the

* acceptable limits (to be defined in chapter V) of photopeak

identification, and the utility of the Bayes' theorem method

will be assessed. The computer code(s) for the third and

C fourth parts of this thesis will be combined as one and

written in the BASIC computer language and run on an Apple II

series computer.

Limitations

This problem is designed to verify a theoretical

technique using numerical methods. As such, the thesis does

not pretend to duplicate all the constraints found in a

4
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photopeak analysis fails. In so doing, it will be shown that

* information about the source can be gained from the

downscattered photons.

*Approach

The problem will be broken down into four main parts.

First, a set of realistic 'generic' source spectra will be

10 developed based on the gamma ray spectra of isotopes likely

to be found in a nuclear source. A number of different

sources will be developed in order to test the ability of

Bayes' probability theory to discriminate between different

nuclear sources.

The second part of the problem involves developing a

*computer program to transport each individual source spectrum

for any distance through the atmosphere. The first thesis

done on this topic attempted to transport gamma ray spectra

* using Monte Carlo techniques (7). This method proved to be

far too cumbersome for the given problem and will not be

investigated further. Instead, this thesis will use

multigroup diffusion theory, which should be a more

applicable transport technique (8). The multi-group

diffusion code developed here uses the Finite Elements Method

with a one-dimensional spherical coordinate geometry and will

be written in Fortran 77 on the AFIT/AD Harris 800

minicomputer.

The third major effort will be to incorporate a

subroutine to analyze the counting statistics at the location

3
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where F is now the function that minimizes the penalty

function P (3). Next, F is replaced by F + 6F, where 6F is

arbitrarily small, and equation (3) becomes

P(F + 6F) = fdV{DV(F + 6F).V(F + 6F)

+ la(F + 6F) 2 - 2(F + 6F)S}

By multiplying through and collecting terms on the right hand

side, equation (4) becomes

P(F + 6F) = P(F) + fdV{DV6F.VF + fF6F

- 6FS) + 0(62F)

* The terms of order OSF in equation (5) can be neglected, as

they are vanishingly small, so that the equation is of the

form

P(F + 6F) P(F) + P(6F) (6)

or 6P = P(F + 6F) - P(F) (7)

In order to obtain the smallest penalty, the right hand side

of equation (7) must go to zero. From equations (5) and (7)

then

6P = JdV(DV6F.VF + EaF6F - 6FS (8)

By using integration by parts and Stoke's theorem, the

17



incremental penalty function becomes

6P = JdV6F(-V.(DVF) + EaF - S (9)

1 This results in a final form of 6P, given by

6P = Jda6FDVF + JdV6F{-V-(DVF) + EaF - S) (10)
f

Therefore, to minimize this quantity (6P), both of the

integrands (one surface and one volume) must go to zero.

VF=0 (11)

-V.(DVF) + ZaF - S = 0 (12)

It is evident from the results presented in equations (11)

and (12) that the penalty function given by equation (3)

* accurately describes the diffusion problem (comparing

equations (1) and (12)). Now the problem has been reduced to

one of minimizing the penalty function in equation (3) by

solving for the function F.

Digitizing the Problem.

The methodology discussed above must now be worked into

a form conducive to computer implementation. The finite

element nature of the problem enters when the function F is

represented by a homogeneous cubic polynomial function. In

one dimension, this function is given by equation (13) (top

of next page):
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F(11 ,12 ) =iZz.f.(l1 1 2) (13)

The values of z are the fluxes and currents (flux

derivatives) at the mesh boundaries, and hence represent the

ultimate form of the solution of the finite element problem.

The functions f in equation (13) are expressed in terms of

the natural coordinates 1 and 1 2.

1 I + 12=1 (14)

In addition, 1 has a value of I at the left mesh node and 0

at the right node, whereas 1 is 0 on the left and one on the

2

right. The mesh configuration is illustrated in figure 2

below. 1 1 2

x 2/ ,X 2

Figure 2. One-Dimensional Version of F(1 1 ,12 )

The function F in equation (3) has now been approximated in

terms of the mesh quantities F1 , j1, F2 ' j2 ; the fluxes and

currents at the nodal points. In its expanded form equation

(13) becomes

F = Ff(1 1 12 ) + j f2 ( I ' 1 2 + F2 f3 (11 12 ) (15)

+ J2 f4 (11 12 )
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The cubic polynomial functions are given by the following

10 equations

f = 1 3 1 2  (16)

f = -t2 (17)• f2 DE 1 2

2 + 3112 (18)
23=  22

"h 12 (19)
4 D 1 2

Equation (3) can now be expressed in terms of the function F

in equation (15). Both the first and second terms in

4equation (3) can be replaced with the aid of equations (16) -

(19). For instance, the second term in equation (3) becomes

0 fdlZa{FIfI + jlf 2 + F 2f 3 + j 2 f 4
} 2  (20)

Equation (20) can be expanded and the integral evaluated by

* using the integral formula given in the equation below (15).

dl( ilq\ hp!q! (21)

1 2 (p+q+l)!

The first term in equation (3) is done in a similar fashion,

with the additional aid of the relationships

dl /dx = -1/h (22)

dl 2/dx I/h (23)

20
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The third term in equation (3) is approximated using

Simpson's intergral approximation, since the value of the

source function S can be calculated throughout the region of

interest (5).

Once the three terms in equation (3) have been

approximated, it is a simple matter to get it into a form

which allows for computer coding. All three integral terms

have been put in a form allowing for evaluation over the

interval of interest, and equation (3) becomes

P = 12.M.z - Z.S - 1(c.z - d) (24)

The first term is simply a combination of the first two
V

integral terms in equation (3), having been expanded and

combined into a single matrix M. This global matrix is a

combination of all the local matrices, there being one local

matrix for each mesh space used. Recall that the local

matrices were obtained by evaluating terms one and two of

equation (3) using equations (16) - (20).

The S matrix consists of the values of the third

integral term in equation (3), which was evaluated using

Simpson's Rule. The last term in equation (24) was added to

account for the boundary conditions of the problem.

Finally, the z matrix is an array containing the values

of the flux and current at each node. Hence, the problem

remains to solve for the values of the z matrix by minimizing

21



equation (24). By taking the partial derivative of P in

equation (24) with respect to z and setting it equal to zero,

as well as the partial derivative of M with respect to X, a

series of linear equations is obtained. The equations,

expressed in matrix form are rearranged and ultimately used

to solve for the z matrix

Z = M-'S + M-c + M-1 (25)

The transport code is written to solve just this set of

equations.

The One-Dimensional. Single Group Problem.

As a first step to running the transport code using the

* Finite Element Method, a simple case was programmed. This

case involves a one dimensional "slab geometry" problem with

a known source function S, and a known fluence solution (12).

The diffusion equation for this geometry becomes:

-D(dF(x))2 + ZaF(x) S(x) (26)dx
(.t

and the final equation for the penalty function becomes

a

P f jdx(D( x)2 + EaF - 2FS) (27)

b

This is precisely the problem which was derived in the last

section, using the one-dimensional cubic polynomials

22

_..........._.........................................J 2

--------------------------------------------------------------------------"---------------,.'."...'.,',.'.'',-.-'" ". "- "..', . .-



(equation 15). Since the fluence as a function of distance

is already known, it becomes an easy matter to check the

results of the program.

The program was tested on the case where the fluence and

source functions are given by

F(x) =x (28)

S(x) = -12x 2 + x4  (29)

The finite element solution (using the source function) is

graphed along with the actual solution in figure 3.

0 4

*F(X) X
CO °

0 LEGEND F.

LINE=FUNCTION
. PTS -FEM SOLN ,

- 0j

-0. 6. 6. 6. 3 A . 0.8 9 1.0 1

x

Figure 3. Finite Elements Solution Verification

23

OP
* **-.-- * --. * **.*



As can be seen in figure 3, the match provided by the Finite

*0 Elements Method is very good indeed.

The Three-Dimensional, Multi-Group Problem.

Following the code verification in one dimension, it is

• necessary to expand the code into the three-dimensional

(spherical geometry) multigroup problem. Since assumption

number (5) assumes radial symmetry, the only dependence is

• on the variable r. As is explained in appendix C, the

three-dimensional problem can be placed into a form which

allows the use of the one-dimensional approximating

polynomials, given by equations (15) - (19). Hence the

problem needs only to be modified to accept the multiple

energy groups.

The transition from single to multigroup is very

straight-forward. The program is modified to calculate the

solutions for flux and current on the nodes (the z matrix)

one time for each group. This involves setting up the global

matrix once for each group as well as modifying the source

term used in the Simpson's approximation. Beginning with the

highest energy group (group 1), the diffuse fluence solution S
is due only to inscattering of the uncollided photons. As

the program solves each consecutively lower energy group, the

source term is modified to account for the downscattered I
fluence from higher energy groups as well as the inscattered

contribution. The iterative process proceeds in the

direction of decreasing energy groups, and hence upscattering

from lower energy groups to higher energy groups is not

24



allowed.

In order to verify the full scale radiation transport

code, a known function similar to equations (28) and (29) was

input, only in this case it was a simple exponential

function. Again, the code output values are very close to

the actual solution. A more important bench mark is attained

by solving the diffusion equation analytically for a simple

case. The analytic solution is outlined in appendix D, along P
with the value returned by the transport code. As can be seen

in appendix D, the answer is acceptable, given only a one

mesh space approximation.

Source Transport

The next step in the process is the actual transport of

each library source to the desired ranges. Each of the

sources was reconstructed at the desired ranges, yielding a

degraded set of source spectra due to scattering and AD

absorption losses. The two types of transported sources are

discussed below.

The Measured Spectra

In order to simulate measured spectra at various ranges

from the sources, it is necessary to transport the library

spectra in two different fashions. The first method involves

using the transport code (developed above) alone to determine

the relative intensities of each library spectrum at a number

of different ranges. These spectra represent the ideal

measured spectra, since the transport code does not introduce

25



.'

any random processes or counting statistics by itself. These

"reference spectra" thus represent good data sets which would

be obtained from an enormous number of measurements in the

field (i.e., the true mean in each channel).

The second method involves taking the reference (ideal)

spectra mentioned above and converting each one into a

measured spectrum by introducing random counting statistics.

The statistics subprogram introduces random variations in the

counting data in li-e with the appropriate statistical

distribution. Two different distributions will be employed in

deriving the measured source spectra: the Poisson

distribution and the multinomial distribution. Since the K

measured sources are actually generated during the analysis

part of the problem, the methodology will be covered in

detail in chapter IV and its appendices.

There are now two different sets of spectra which will

be used in the analysis process. The first set consists of a

good group of measured spectra; the "reference spectra,"
.-

which was obtained by the transport of the library spectra.

These reference spectra are equivalent to a set of spectra

determined by many different measurements of the sources.

The reference sources have been plotted out at ranges of 50,

100, 200, 300, 400 and 500 meters, and are presented in S
figures 4 through 9. It is important to note that the

reference source spectra are in 4irr2 fluence units, so they

can be easily compared with the library sources. The actual

values of fluence for the reference sources are tabulated in

26



tables III-i through 111-6.

The second set of source spectra represents a less than

ideal group of spectra; the "measured spectra," obtained by

the transport of the library spectra with the addition of

counting statistics considerations. This group is equivalent

to a set of spectra obtained by taking a single measurement.

of the sources. Since the measured sources are generated

during the analysis process, they will be listed in chapter

IV.

Background Considerations

In addition to the reference spectra and measured

spectra discussed above, the library spectra were generated a

third time, but this time background counts were accounted

for. The background spectrum provided with the high

resolution data was used to determine the mean number of

background counts present in each channel of the reference

source spectra. The measured source spectra are generated in

a manner similar to the "no background case," but now a

separate subroutine is used to generate random background

counts in line with the appropriate statistics. These

background counts are then added, channel by channel, to the

measured source spectrum of interest. Again, the generation

of the measured source spectra is discussed at length in

chapter IV.
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Figure 4. Reference Source A at 50, 100 & 200 meters
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Figure 6. Reference Source B at 50, 100 & 200 meters

30



Table IV-i: Sample Prior Distribution

Source Number in Sample P(Ai)

1 5 0.5

2 2 0.2 P

3 3 0.3

The second term in the numerator of equation (30), P

P(XIAi), is the probability of obtaining the measured

spectrum X given the reference spectrum Ai. This term is a

calculated quantity, and will vary depending on the type of

counting statistics used.

Poisson Distribution.

The first method of determing the values of P(XIAi) will

assume that the counts are collected in a Poisson

distribution. The assumption then is that each one of the

eighteen channels in the low resolution detector is

statistically independent from the others. The Poisson

distribution is a particularly valid one in counting problems

when the average number of counts is much smaller than the

total possible number (i.e., smaller than the number of gamma

photons emitted by the entire nuclear source) (4). Counting

data collected in a Poisson distribution is obtained by

running the detector for an arbitrary length of time, which

generally yields a different number of total counts each

time. This is in contrast to the multinomial distribution,

which will be covered later in this chapter. C
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represents the prior distribution of the three different

sources. As a starting point, the three values will be

assumed equal, with

P(Al) =0.3333 (33)

P(A2) = 0.3333 (34)

P(A3) = 0.3333 (35)

In other words, it is assumed that each of the three sources

occurs equally often. This quantity can be varied to test

the sensitivity of the posterior distribution. In the case

of actual source measurements in the field, the prior

distribution would presumably be know.

As a simple example of the prior distribution, assume

ten containers of nuclear materials have had the identifying

labels removed. Further, assume that the only way to

determine the identity of the nuclear material in each of the t

containers is to measure the spectrum of each with a

multichannel gamma-ray detector at a range of 100 meters. In

order to use Bayes' Theorem, the prior distribution must be

determined. In this example problem, the total number of

each type of material is known, so it is a simple matter to

determine the prior distribution, as seen in table IV-1. In

the main thesis problem, it is assumed that the prior

distribution is also a given.
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which is the joint probability of the variables X and Ai

(17). Or, in other words

P(AiX) = P(X,Ai) (32)

The denominator in equation (30) is the sum of all the

combined likelihood functions and prior distributions. The

summation is over the total number of reference sources,

which is three in this problem.

As can be seen in equation (30), Bayes' theorem allows

for the combination of prior information (the prior

distribution of sources) and the measured data (the

likelihood functions) to determine the posterior

distribution, given by P(AiJX). The posterior distribution

gives the probability (likelihood) of having source Ai,

given the measured spectrum X. For a given measured source

X, P(A1IX) is the probability that the source Al is actually

the one being measured. The power of this method is that it

clearly allows for the combination of all available

information in arriving at the posterior distribution.

Applied Form

Having reviewed Bayes' Theorem in its general form, the

next task is to examine it specifically in relation to this

problem. The equation will be examined term by term, and the

specific quantities will be identified as they apply to this

problem.

As was mentioned above, the P(Ai) term in equation (30)
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P(XjAi) P(Ai)
P(Aix X) 71I

I P(XIA.)P(A (30)j=1 J )""

The variable Ai (where i = 1,3) represents the known data, or

in this case, the reference sources, and X represents the

given sample data, or the measured source. Therefore, P(Ai)

is the probability of occurence of the reference source Ai.

Quite simply, P(Ai) represents the proportion of occurrence

of source Ai, so that if there exists a group of ten nuclear

sources, of which four are known to be of type Al and six of

type A2, then P(AI) = 0.40 and P(A2) = 0.60. This

probability distribution is defined as the "prior

distribution." The prior distribution is the unconditional

probability of Ai occurring.

Given that X represents the observed or measured value

of a source, then the P(XjAi) term in equation (30) is the

probability that the measured source spectrum X is due to the

reference spectrum Ai. Given the source spectrum Al then,

P(XIAl) is the probability that a measured spectrum X is

caused by the spectrum Al. This probability is defined as

the likelihood furntion, and is a discrete value in this

problem, since there is a predefined number of sources. Note

that the numerator in equation (30) can also be expressed as

P(AiX) = P(XIAi) P(Ai) (31)
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IV. Identification and Analysis of Source Spectra

S

In chapter II, the library source spectra were derived,

and the methodology for creating the reference spectral

sources and the measured spectral sources was described. In

chapter III, the transport code was developed using the

Finite Element Method (FEM). This code was employed to

generate the reference source spectra discussed in chapter ,

III. Now that all the raw data is available, a technique must

be defined by which the measured sources can be identified

and analyzed. The methods of identification and analysis S

will be discussed in this chapter.

Bayes Theorem b

General Form.

The method of identifying sources in this thesis will use

Bayes' Theorem. In the general sense, the term Bayesian is

used to describe an approach to combining information that

uses the sample information (i.e., data collected) as well as

other available information (17). In the case of spectral

source identification, the sample information consists of the

measured spectra, and the other information is the set of

reference spectra.

Bayes' theorem allows one to make an assessment of the

likelihoods of the occurence of certain events, given the -

sample information. In terms of the variables X and A (top

of next page):
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TABLE 111-6

Relative Intensity Distribution of Reference Source C

(counts /photon)

Group Number 300 meters 400 meters 500 meters,

1 0.0 0.0 0.0

2 0.0 0.0 0.0

3 0.0 0.0 0.0

4 0.0 0.0 0.0

V5 0.0 0.0 0.0

6 2.78E-15 9.35E-16 3.58E-16

7 1.45E-14 4.73E-15 1.81E-15

8 2.28E-14 7.23E-15 2.84E-15

9 1.02E-14 3.96E-15 2.29E-15

10 3.37E-14 1.07E-14 4.66E-15

11 1.75E-14 6.23E-15 3.43E-15

12 3.54E-14 1.17E-14 5.81E-15

13 1.29E-13 4.04E-14 1.90E-14

14 1.52E-13 4.51E-14 2.18E-14

15 1.14E-12 3.36E- 3 1.54E-13

16 1.69E-11 6.31E-12 3.15E-12

17 4.OOE-11 1.62E-11 9.24E-12

18 6.75E-12 2.73E-12 1.58E-12 '.

39



TABLE 111-5

S. Relative Intensity Distribution of Reference Source C

(counts /photon)

Group Number 50 meters 100 meters 200 meters

1 0.0 0.0 0.0

Se2 0.0 0.0 0.0

3 0.0 0.0 0.0

4 0.0 0.0 0.0

5 0.0 0.0 0.0

6 3.61E-13 6.98E-14 1.04E-14

7 2.02E-12 3.85E-13 5.61E-14

qP8 3.40E-12 6.43E-13 9.14E-14

9 2.37E-13 1.08E-13 3.05E-14

10 5.23E-1 9.76E-. 1.37E1

11 5.42E-13 2.31E-13 5.81E-14

12 4.76E-12 9.22E-13 1.39E-13

13 2.67E-11 4.55E-12 5.60E-13

14 2.76E-11 5.08E-12 6.75E-13

15 3.56E-10 5.55E-11 5.71E-12

16 1.29E-9 3.OOE-10 5.67E-11

17 1.31E-9 4.49E-10 1.17E-10

18 3.41E-10 8.99E-11 2.02E-11
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TABLE 111-4

Relative Intensity Distribution of Reference Source B

(counts /photon)

Group Number 300 meters 400 meters 500 meters

1 0.0 0.0 0.0 p

2 0.0 0.0 0.0

3 0.0 0.0 0.0

4 0.0 0.0 0.0

w5 0.0 0.0 0.0

6 4.49E-15 1.51E-15 5.80E-16

7 1.60E-14 5.29E-15 2.06E-15

8 1.15E-14 3.91E-15 1.77E-15

9 1.04E-14 3.76E-15 1.95E-15

10 1.30E-14 4.85E-15 2.65E-15

*11 1.33E-14 4.45E-15 2.23E-15

-'12 9.46E-14 2.39E-14 8.04E-15

13 5.84E-12 1.53E-13 5.60E-14

14 1.14E-12 2.71E-13 1.O1E-13

15 3.97E-12 1.59E-12 9.56E-13

16 2.45E-11 1.05E-11 6.19E-12

17 4.54E-11 2.08E-11 1.30E-11

R18 7.53E-12 3.46E-12 1 2
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TABLE 111-3

Relative Intensity Distribution of Reference Source B

(counts Iphoton)

Group Number 50 meters 100 meters 200 meters

1 0.0 0.0 0.0 -

02 0.0 0.0 0.0

3 0.0 0.0 0.0

4 0.0 0.0 0.0

5 0.0 0.0 0.0

6 5.84E-13 1.13E-13 1.69E-14

7 2.20E-12 4.21E-13 6.18E-14

*8 1.36E-12 2.72E-13 4.29E-14

9 8.49E-13 1.94E-13 3.58E-14

10 9.15E-13 2.18E-13 4.29E-14

*11 1.67E-12 3.32E-13 5.12E-14

12 2.78E-11 4.53E-12 4.88E-13

13 1.63E-10 2.67E-11 2.94E-12

14 3.75E-10 6.OOE-11 6.22E-12

15 4.15E-10 8.07E-11 1.33E-11

16 1.12E-9 3.06E-10 7.12E-11 -

17 9.38E-10 3.74E-10 1.17E-10

18 2.34E-10 7.05E-11 1.96E-11
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TABLE 111-2

Relative Intensity Distribution of Reference Source A

(counts /photon)

Group Number 300 meters 400 meters 500 meters

1 0.0 0.0 0.0

52 0.0 0.0 0.0

3 0.0 0.0 0.0

4 0.0 0.0 0.0

5 0.0 0.0 0.0

6 4.16E-15 1.40E-15 5.37E-16

7 1.41E-14 4.65E-15 1.82E-15

*8 2.64E-14 8.33E-15 3.23E-15

9 3.55E-14 1.13E-14 4.78E-15

10 9.16E-14 2.75E-14 1.10E-14

*11 1.13E-13 3.14E-14 1.25E-14

12 2.54E-13 6.97E-14 2.80E-14

13 3.31E-12 8.08E-13 2.56E-13

14 3.96E-12 1.05E-12 4.56E-13

15 1.02E-11 4.64E-12 2.98E-12

16 3.65E-11 1.85E-11 1.25E-11

17 5.23E-11 2.94E-11 2.06E-11

18 8.55E-12 4.81E-12 3.37E-12
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TABLE I11-1

Relative Intensity Distribution of Reference Source A

(counts Iphoton)

Group Number 50 meters 100 meters 200 meters

1 0.0 0.0 0.0

2 0.0 0.0 0.0

3 0.0 0.0 0.0

4 0.0 0.0 0.0

w5 0.0 0.0 0.0

6 5.41E-13 1.05E-13 1.57E-14

7 1.92E-12 3.69E-13 5.42E-14

(P 8 4.02E-12 7.56E-13 1.07E-13

9 5.04E-12 9.70E-13 1.42E-13

10 1.60E-11 2.92E-12 3.91E-13

*11 2.23E-11 4.03E-12 5.15E-13

12 5.37E-11 9.51E-12 1.19E-12 -

13 1.05E-9 1.68E-10 1.76E-11

L;14 7.03E-10 1.37E-10 1.85E-11

15 2.40E-10 8.97E-11 2.67E-11

16 5.14E-10 2.35E-10 8.41E-11

17 3.56E-10 2.15E-10 1.03E-10

18 1.93E-10 4.87E-11 1.72E-11
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The Poisson distribution is given by

X

P(x,a) = . exp(-a) (36)'.

where the variable a is the mean number of counts occurring

in the channel of interest, and x is the observed number of

counts in the channel (4). Or, in the case of a multichannel

detector, equation (36) becomes

~(aikX
P(x ,aik)  (a ik exp(-ai) (37)

ko ik~ x 'ikk

V where k denotes the channel number, which ranges from one to

eighteen. In order to get an expression for P(XIAi), the

individual channel probabilities must be combined into a

*1 single probability. This is achieved by noting that since

the channels are statistically independent of one another,

the probabilities multiply. Hence the relationship becomes

18 (aik)Xk
P(XIAi) == X exp(-aik) (38)

k=1 Xk.

The mean number of counts in channel k is given by aik, and

comes from the reference spectrum, discussed in chapter III

(ref. figures 4 - 9). The final form of equation (38) then

becomes (top of next page):
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"V-

18 (Sik + Ik) k
P(XAi d Xk k exp(-(Sik + Bk)) (39)

Here Sik represents the mean number of counts from reference

spectrum i (i = 1,3) in channel number k (k = 1,18) and Bk is

the mean number of background counts in channel k. Recall

that initially, the analysis is done with zero background

counts in all channels of all sources. Xk in equation (39)

represents the number of counts in channel k observed in the

measured spectrum.

The Poisson version of the Bayes' theorem analysis was

coded in the BASIC computer language and run on an Apple II

I series computer. The program listing and description is

included in appendix H.

The value of Xk, obtained from the measured 
source r

* spectrum, is obtained using a random number generator and the

Poisson distribution. Details of this process are covered in

appendix G. On the other hand, the values of Sik come from

the reference source spectra, which were discussed in chapter

III. The method of obtaining numerical values for the

reference sources is discussed in appendix F.

Gaussian Distribution.

In the limit of a large number of counts, the Poisson

distribution approaches the normal or Gaussian distribution,

which is given by (top of next page):
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18 exp(-i(xk - (Sik + Bk))/oik)*A P(XjA) = I*P kX (2A [1ik) (40)

* Here, oik is the standard deviation of the counts of source i

in channel k. The standard deviation squared is therefore

equal to the number of counts observed in the channel of

*0 interest, Xk. All other terms in equation (40) are defined

the same as in the Poisson distribution.

In practice (in this problem) the Gaussian distribution

is used anytime the counts measured in any one channel exceed

34, since the factorial in the denominator of the Poisson

distribution (equation (39)) exceeds the overflow limits of

the computer (lE+38). The Gaussian version of the Bayes'

theorem analysis was also coded in BASIC, and is included in

appendix H.

A new measured source spectrum is generated each time

the analysis code is run, and hence determines the values for

Xk in equation (40). The method of obtainining a measured

source spectrum with a Gaussian distribution is contained in

appendix G. The method of obtaining reference source spectra

is the same as in the Poisson version. '5.

Multinomial Distribution.

The second main method of performing the Bayes' theorem

analysis employs the multinomial distribution. Unlike the

Poisson (and Gaussian) distribution, the counts in the

different channels of a multinomial distribution are all
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interdependent (2). To obtain a multinomial distribution in

a multichannel analyzer, counts are collected until a certain

predetermined total is reached, at which time the detector is

turned off. By collecting in this manner, the number of

counts collected in one channel becomes dependent on the

counts in all other channels (10). This dependence follows

quite simply because each count collected in one channel

decreases by one the total counts available for all other

channels. In terms of equation (30) variables, the

multinomial distribution is given as

- N! 18 (fi k. P XI~ )  =ik (41)

Here Xk again represents the measured number of counts in

channel k, subject to the constraint

40
18

x xk = N (42)
k=1

4where N is the the total number of counts in all channels

combined (13). The variable fik is the fraction of the

counts of source i occurring in channel k. The fik's are

obtained from the reference source spectra and the

methodology is discussed at length in appendix F. The fik

values are subject to the constraint

18

k ik (43)k.1
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for each source.
40

As was true in the Poisson and Gaussian analysis codes,

the multinomial analysis code is contained in appendix H.

The method of obtaining the measured source (Xk) is discussed

in appendix G, and the reference sources (fik) in appendix F.
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V. Results and Discussion

Having the reference sources in hand, the problem

remains to analyze the measured sources at the ranges of 50,

100, 200, 300, 400 and 500 meters from the source. The

sections in this chapter will be presented in order of the

analysis runs. First the Bayes' theorem analysis is done

using Poisson statistics with no background contribution.

Secondly, the multinomial version of Bayes' theorem is used,

again with no background. Thirdly, the Poisson version will

be run again, but this time using the background contribution

discussed earlier. Finally, an unknown source will be

"measured" in one pass at a distance of 50 meters, to see how

the Bayes' posterior distribution behaves with a nonlibrary

source spectrum.

Bayes' Theorem With Poisson: No Background

The Bayes analysis code using the Poisson statistics

package was run at all ranges using each of the three sources

as a measured source once at each range. Hence, this

constituted 18 runs using the Poisson and Gaussian codes

(depending on the level of counts, ref. chapter IV). The

baseline level of counts was assigned as 1000 counts at 50

meters. This corresponds to a collecting time of

approximately 30 minutes, using the one square centimeter

detector assumed in this problem. An equal counting time was

assumed for each measurement, in line with Poisson counting
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statistics. The total number of reference counts in each -,

source and the measured source values for each run were

determined as discussed in appendices F and G.

The results of the posterior distribution are presented

in table V-1. As can be seen in the posterior distribution

for measured source A, the probability of positively

identifying the measured source drops below the 99.7% level

near the 200 meter mark, but stays above 70% all the way out W
to 500 meters. Measured sources B and C do not stay above

the 70% level, although source C remains well above the 90%

level out to 400 meters. Part of the reason for the

consistantly high values with source A is because of the

relative strength of the source. As can be seen in table

V-3, measured source A has a total of 20 counts collected,

which is twice the number of counts in both sources B and C

at 500 meters. This follows because library source A has

more high energy features relative to sources B and C, and

high energy photons are degraded less severely than are low

energy photons (reference cross section data in appendix B).

When comparing these results to the method of photopeak

identification (reference appendix A), it is evident that the

uncollided photons are rapidly degraded by the exponential

scattering term, and the peaks soon drop below the 3 sigma

level. As can be seen in appendix A, the characteristic

photopeak of source B has already degraded below the 3 sigma

level at 50 meters, and the photopeaks of sources A and C

drop below 3 sigma shortly beyond 50 meters. Therefore,
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Table V-1

Bayes' Posterior Distribution

(Poisson with no background)

1. Measured: Source A

RANGE (m) P(AlIX) P(A21X) P(A3IX)

50 1.000 0.000 0.000

100 1.000 9.081E-21 0.000

200 9.913E-1 8.660E-3 7.707E-5

300 8.780E-1 1.192E-1 2.800E-3

400 7.810E-1 1.891E-1 2.989E-2

IL500 7.396E-1 2.113E-1 4.908E-2

2. Measured Source B

RANGE m)P(A1JX) P(A21X) P(A31X)

*50 0.000 1.000 0.000

100 0.000 1.000 1.626E-6

200 6.926E-8 8.671E-1 1.329E-1

*300 8.519E-2 8.049E-1 1.099E-1

400 7.682E-3 4.599E-1 5.324E-1

500 1.862E-3 4.192E-1 5.790E-1

I. 3. Measured Source C

RANGE C)P(A1lIX) P(A2-tX) P(A31X)

50 0.000 0.000 1.000

100 0.000 0.000 1.000

200 5.543E-25 2.310E-4 9.998E-1

300 7.065E-5 8.319E-2 9.167E-1

400 2.834E-7 7.390E-2 9.261E-1

500 1.396E-2 4.919E-1 4.942E-1
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Table V-2

Measured Source A (Poisson Distribution)

channel 50 m 100 m 200 m '

number counts counts counts

1 0 0 0

2 0 0 0

3 0 0 0

4 0 2 0

5 0 0 03

6 0 0 0

7 1 1 1 ,"

8 3 0 1

9 3 0 1

10 6 1 1

11 8 1 1

12 17 2 0

13 332 54 5

14 222 44 5

15 77 28 9

16 162 73 26

17 113 69 32

18 60 16 5
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Table V -3

Measured Source A (Poisson Distribution)

channel 300 m 400 m 500 m

number counts counts counts -

1 10 0

2 1 0 1

3 1 0 1

4 0 0 0

5 0 1 0

6 011

7 1 1 2

8 0 1 0

90 0 1

10 0 0 0

11 0 0 0

12 1 1 0

13 2 0 1

14 1 0 0

15 3 1 2

16 12 6 3

17 19 10 7

18 3 2 1

54



jL

Table V-4

Measured Source B (Poisson Distribution)

channel 50 m 100 m 200 m

number counts counts counts

1 0 0 0

2 1 1 1

3 1 0 1

4 0 0 0

5 0 0 0

6 1 1 1 -

7 3 0 2

8 1 1 0

9 1 0 1 'J

10 0 1 0

11 1 0 0

12 7 2 0

13 50 6 2

14 114 18 1

15 127 25 5

16 341 94 21

17 287 114 36 p

18 71 21 6
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Table V-5

Measured Source B (Poisson Distribution)

channel 300 mn 400 mn 500 mn

number counts counts counts

1 1 0 1

2 0 0 0

3 0 1 0

4 0 2 0

5 10 1

6 0 1 0

7 10 0

8 0 0 0

9 1 0 0

10 0 1 0

11 10 2

12 0 1 0

13 2 0 0

14 1 1 1

15 2 0 0

16 7 4 1

17 13 4 4

18 2 1 0
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Table V-6

Measured Source C (Poisson Distribution)

channel 50 m 100 m 200 m

number counts counts counts

1 1 1 0

2 0 1 1P

3 0 10

4 0 10

5 1 0 0

6 0 0 1

7 0 0 1

8 1 1 0

9 0 0 0 I

10 0 0 0

11 2 0 0

12 1 0 0

13 7 2 2

14 9 2 0

15 106 16 0

16 382 89 18

17 389 134 35

18 101 29 5
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Table V-7

Measured Source C (Poisson Distribution)

channel 300 m 400 m 500 m

number counts counts counts

1 0 0 0

2 0 0 1

3 2 1 0

4 0 1 0

5 0 0 0

6 1 0 1

7 0 0 1

8 0 0 0

9 0 0 0

10 0 2 0

11 0 0 0 3

12 1 0 0

13 0 1 2

14 0 0 0

15 0 0 0

16 6 1 2

17 13 5 3

18 2 0 0
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eventually the probability in equation (40) becomes zero

(exceeding the computer limits of 1E-38). This leads to a

zero term in the denominator of equation (30) of chapter IV,

leaving an undefined Bayes' posterior distribution. This

problem is even more likely to occur at higher count levels,

that is, in regions close to the source where photopeak

identification is at its best. Hence, when the Bayes'

theorem method yields "undefined" probabilities, it serves as P.

an indicator that an unknown source, that is, a source not in

the library, has been encountered. Other methods must then

be used to determine the composition of the new source.

Applying the Results

What can be learned from these results that can be

applied to experiments in the field? First of all, it

appears from the contrast between the Poisson and multinomial

statistics that it is far better to run the detector as long S

as possible in order to optimize the number of counts

(Poisson). If the detector is automatically shut off after

reaching a certain number of counts, much information is lost b

from the stronger sources. This effect was observed in the

Poisson runs without background. Indeed, even though all of

the sources used in this analysis were assumed to be of equal

strength, a slight statistical increase in the number of

counts (source A) was significant in terms of positive

identification.

Another point of interest uncovered in the analysis is -
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Table V-13

Measured Source C

(Poisson Distribution with Background)

channel

number 50 m 100 m 200 m 300 m 400 m 500m

1 2 4 1 1 1 2

2 0 1 0 0 0 0

3 1 0 0 0 2 2

4 2 0 0 1 2 0

5 1 0 0 2 0 1 P

6 1 3 2 3 4 0

7 6 6 6 5 4 6

8 7 3 4 7 5 6

9 21 19 23 22 20 22

10 24 23 22 26 23 24

11 241 242 242 241 240 240

12 23 21 25 22 26 24

13 48 41 41 40 40 41

14 46 40 41 40 41 40

15 167 77 64 61 61 62

16 529 237 162 151 148 145

17 472 217 117 94 83 83

18 140 66 43 39 39 40
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Table V-12

Measured Source B

(Poisson Distribution with Background)

channel 6

number 50 m 100 m 200 m 300 m 400 m 500m

1 3 1 2 1 1 0

2 1 0 1 3 1 0 P

3 0 0 0 1 1 2

4 2 1 0 0 0 1

5 2 2 0 1 2 1

6 0 1 4 1 7 3

7 5 5 5 5 5 6

8 5 5 4 4 5 5

9 22 20 23 21 20 19

10 24 23 22 23 24 22

11 240 242 241 243 241 240

12 31 24 24 22 22 23

13 90 50 41 44 42 39

14 153 56 39 39 39 40

15 192 88 63 62 60 61

16 488 241 168 150 149 149

17 370 197 115 94 87 86 5

18 111 59 45 41 38 38
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Table V-il

Measured Source A

(Poisson Distribution with Background)

channel

number 50 m 100 m 200 m 300 m 400 m 500m

1 1 1 0 2 1 0

2 0 0 1 0 0 1

3 1 1 0 0 1 2

4 1 1 0 0 1 2

5 0 0 3 1 1 0

6 0 3 3 1 1 0

7 5 7 5 5 5 1

8 6 5 4 7 5 7

9 24 22 19 24 22 21

10 29 26 24 23 23 24

11 249 240 240 240 241 241

12 40 26 21 23 22 23

13 372 94 47 42 43 42

14 262 83 45 39 40 39

15 139 91 67 64 62 61

16 309 220 174 158 152 151

17 194 149 116 96 90 88 h
18 101 54 43 41 38 38
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Figure 12. Posterior Distributions: Poisson with Background
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Table V-10

Bayes' Posterior Distribution U

(Poisson with background)

1. Measured: Source A

RANGE (in P(A1 IX) P(A21X) P(A31X)

50 1.000 0.000 0.000

100 1.00 7.463E-11 4.244E-19

200 5.384E-1 3.026E-1 1.591E-1

300 3.783E-1 3.424E-1 2.793E-1

400 3.642E-1 3.339E-1 3.019E-1

500 3.611E-1 3.319E-1 3.070E-1

2. Measured Source B

RANGE (m) L(AIXL) P(A2IX) P(A31X)

50 0.000 1.000 0.000

100 8.479E-15 9.886E-1 1.140E-2

200 1.488E-1 4.297E-1 4.215E-1

300 2.841E-1 3.739E-1 3.420E-1

400 3.104E-1 3.464E-1 3.432E-1

500 3.368E-1 3.380E-1 3.252E-1

3. Measured Source C

RANGE ( P(AIIX) P(A21X) P(A31X)

59 0.000 0.000 1.000

100 0.00 1.691E-3 9.983E-1

200 1.571E-1 4.182E-1 4.247E-1

300 2.814E-1 3.447E-1 3.739E-1

400 2.764E-1 3.514E-1 3.722E-1

500 3.060E-1 3.442E-1 3.499E-1
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probabilities for positive source identification degrade much

more rapidly than in the case with no background. All three

sources maintain high probabilities of positive

identification out to 100 meters, at which time the

background level overwhelms the number of source counts. But 4

as can be seen in tables V-lI - V-13, the source counts in

each channel are already becoming obscured by background at

100 meters (compare with tables V-2 - V-7). In cases with a

large amount of background then, Bayes' theorem appears to

lose information quite rapidly, but still offers some

improvement over the method of photopeak identification.

The Unidentified Source

One of the severe limitations of Bayes' theorem applied

to spectral identification appears to be in the realm of

identifying unknown sources, or sources simply not contained

in the source library. When an unknown source was formulated

which differed considerably from the library sources, the

Poisson (Gaussian) analysis failed to return any numerical

information whatsoever.

The problem is identified when examining equation (40)

in chapter IV. When using the normal distribution (i.e., in a , "

region of reasonable count levels), any excessive deviation

from the reference value in a channel results in an extremely

small value of P(X IAi), due to the exponential term. This

problem is compounded if every one of the eighteen channels

differs from each channel of the reference sources, since

66

....



Table V-9

Relative Intensity and Count Levels of Background

Channel Counts/photon Counts

1 . .

1 0.0 0.0

3 0.0 0.0

4 0.0 0.0

4 0.0 0.0

6 2.58E-3 1.29

7 1.01E-2 5.04

8 9.17E-3 4.59

*9 4.18E-2 20.89

10 4.56E-2 22.82

11 3.64E-2 240.00

*12 4.51E-2 22.56

13 8.11E-2 40.57

14 7.79E-2 38.95

L15 1.21E-1 60.66

16 2.92E-1 145.96

17 1.61E-1 80.56

18 7.58E-2 37.91
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Bayes' Theorem With Poisson: With Background

In order to incorporate a background level into the

Bayes' theorem analysis, it was necessary to generate a

separate background "source" based on the high resolution

data used to generate the original library sources (ref.

chap. 2). The background measurements were taken at the same

time the original source measurements were made, and

6 therefore should accurately reflect the background in the low

resolution detector of this problem. The relative intensity

distribution of the background is presented in table V-9. A

background level of 500 counts is assumed, based on the

background measurements taken with a counting time of about

30 minutes (as before). The reference levels based on this

O number are also provided in table V-9. Since the Poisson

distribution is being used, the background level will remain

constant at each range (i.e., same counting time).

* The reference level of counts was added channel by

channel to each reference source spectrum, and a random

(measured) background count level was determined separately

using the same method as was discussed in appendix G. Hence

the random number generator is called upon twice: once to

generate the "normal" measured source spectrum, due to the -

photo emissions of the nuclear material, and once to generate

the measured background spectrum. The results of both

calculations are then combined to yield a final measured

source spectrum for the analysis process.

As can be seen in table V-10 (and figure 12), the
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Figure 11. Posterior Distributions: Multinomial
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Table V-8

Bayes' Posterior Distribution

(Multinomial with no background)

1. Measured: Source A

0RANGE (mn) P(AljX) P(A21X) P(A31X)

50 1.000 0.000 0.000

100 1.000 3.176E.-30 0.000

*200 9.999E-1 8.493E-5 1.101E-11

300 2.398E-1 7.586E-1 5.949E-4

400 3.743E-1 4.165E-1 2.092E-1

500 4.452E-1 3.483E-1 2.066E-1

2. Measured Source B

RANGE (mn) P(A1IX) P(A21I P(A31X)

0 50 0.000 1.000 0.000

100 2.429E-29 1.00 3.852E-14

200 1.470E-1 8.468E-1 6.219E-3

*300 1.378E-1 8.622E-1 1.453E-5

400 1.755E-1 3.344E-1 4.902E-1

500 2.673E-1 3.397E-1 3.930E-1

3. Measured Source C

RANGE (mn) P A1ix) P(A21X) P(A3IX)

50 0.000 0.000 1.000

100 0.000 5.675E-12 1.000

200 7.598E-8 1.349E-2 9.865E-1

300 3.223E-2 9.504E-2 8.727E-1

400 1.790E-1 3.355E-1 4.855E-1

K500 1.798E-1 3.060E-1 5.142E-1
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F.

VBayes' Theorem With Multinomial: No Background

As was discussed in chapter IV, the multinomial

distribution is used when the detector counts to a

predetermined number of counts, then shuts off. This method

was programmed in order to contrast its effectiveness with

that of the Poisson distribution, which has no constraint on

S gthe number of counts collected. The posterior distributions

from the multinomial runs are presented in table V-8.

Even though the multinomial analysis was done using the

same initial reference count level of 1000 counts at 50

meters, it can be seen that the probabilities of accurately

identifying a measured source drop off much more drastically

Wthan do the Poisson values. The assumption that each source

measured has exactly the same number of counts (the basis for

this distribution) probably drives the values down more

O rapidly as the range increases. Recall in the case of

Poisson statistics, source A had more total counts collected

at 500 meters than did either of the other measured sources,

which aided in maintaining a higher probability with

increased range.

The results presented in table V-8 are also depicted

graphically in figure 11. Since the multinomial distribution

yields lower values of probability, the Poisson methodology

will be used exclusively in the remaining analysis effort.
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*Bayes' theorem extends positive identification a minimum of
4P

100 meters for sources A and C, and 50 meters for source B

(reference table V.1).

The most striking aspect of the Bayes' probabilities is

that they remain relatively high even though the number of

counts available is very small. Indeed, all three source

spectra look strikingly similar at 400 meters, yet measured

source A is still identified 78.1% of the time, and measured

source C 92.6% of the time. Therefore, if the criterion for

positive identification is reduced to a level less than 3

sigma, Bayes' theorem can extend the range of identification

even further.

This is in contrast to the method of photopeak

O identification, which fails at relatively small ranges

(around 50 meters). This failure is due to the small number

of uncollided photons available, since the number is rapidly

reduced by the exponential term in Beer's Law (appendix A).

Even large photopeaks cannot withstand the exponential losses

in conjunction with the rising background level due to

downscattered photons. Indeed, in regions where enough

photons exist to render photopeak identification viable

(close to the source), Bayes' theorem will also return

favorable results, as evidenced by the 100% values at a range

of 50 meters.

The results of the Poisson version of the Bayes'

analysis are plotted in figure 10.
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the inability of Bayes' theorem to generate information on

non-library source composition. A possible solution to this

problem might be to build up a vast number of library sources

based on the gamma ray spectra of specific isotopes. When an

unkown is encountered, the Bayes' analysis could be run using

different combinations of the isotopic reference sources,

until a reasonable posterior distribution is reached. The

probability of occurrence, P(Ai), could also be modified in

order to reach a high degree of certainty. Chapter VI will

briefly discuss some follow on recommendations based on this

subject.
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VI. Summary and Recommendations

To summarize this thesis problem, the purpose was to

test Bayes' theorem, in theory, as an aid to extending the

range of positive identification of nuclear materials, using

features in the characteristic gamma ray spectra. To achieve

this goal, four basic steps were initiated, as covered in the

first four chapters of this report. First, the library

source spectra had to be selected, by studying available high

resolution gamma ray spectra. These were then regrouped into

a convenient, low resolution form for which macroscopic cross

sections are available (18 groups). Secondly, a transport

code was developed using the Finite Element Method to

transport these library sources to any desired range, in

order to come up with the reference sources, or in other

words, the sources which might result from the ideal

measurement of the source spectra at a distance. Third, the

reference sources were degraded into simulated measured

sources by applying various statistical distributions, which

included the Poisson (and Gaussian) and the multinomial

distributions. And lastly, the measured sources were analyzed

using Bayes' theorem in order to assess the probability that

each measured source would be correctly identified. The

results were compared with the method of photopeak

identification, to see if any improvements could be gained by

using Bayes' theorem.

As can be seen by the results in chapter V, Bayes'
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theorem has strong points and weak points. As was seen in

the case of measured sources with the background extracted,

Bayes' theorem offers a dramatic increase in the accuracy of

identification when contrasted with photopeak identification.

When background is not extracted from the measurements prior

to analysis, the results are less convincing in the low count

environment (i.e., measurements taken at extreme distances),

but still offer an improvement over photopeak identification.

The major disadvantage with Bayes' theorem appears to be the

requirement for the measured sources to be contained as

library sources in order to be identified.

Recommendations

V Bayes' theorem does indeed extend the range of detection

of nuclear materials, but much more research needs to be

done. Some follow-on areas of research include investigating

6 the utility of Bayes' theorem on high resolution data.

Theoretically, the results should be even more dramatic than

in the low resolution case. This is evident from equation

C (40) in chapter IV, where it is seen that the deviations

between measured and reference (library) counts in channels

will make the probability extremely small in the case of a

mismatch, since the multiplication has increased from 18

channels to a much larger number of channels. Therefore, the

probability of measuring the wrong source will approach a

P40 small number (possibly zero) much more rapidly than in the 18

channel scenario. An interesting follow-on effort could test
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.

this concept by increasing the number of channels to some

*(arbitrary) large number. The 18 gamma group cross section

data could be interpolated to accomodate this larger number

of energy groups.
V

Secondly, a method should be investigated that can

adjust the prior distribution in conjunction with the library

sources in order to positively identify new sources. As was

mentioned in chapter V, a large number of isotopic library

sources might be developed and used in combination with the

prior distribution to determine if Bayes' theorem can aid in

identifying new sources. As it stands now, the results

discussed in chapter V show that Bayes' theorem yields no

information on new source composition, when only a small

number of library sources is available. This aspect of

Bayes' theorem is a potentially complicated problem, and

unfortunately, time didn't allow it to be addressed in this

6 effort.
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Appendix A: Photopeak Analysis Considerations

Photopeak Analysis in Theory.

As has been mentioned in several places throughout the

main text, the basic premise of this thesis is to extend the

range of spectral identification by applying Bayes' theorem to

measured spectra instead of the method of photopeak

identification. The principal difference in these two methods

is that photopeak identification uses only the uncollided

fluence as an identification feature, whereas Bayes' theorem

uses both the uncollided fluence and the scattered fluence as

useful information for means of source identification.

Mathematically, the virgin (uncollided) fluence is

*attenuated exponentially, as is seen in Beer's Law:

t° 2

l(r) = lo(r) exp(-Etr)/47r2 (44)

t

In equation (44), E is the total macroscopic cross section for

interaction for photons at the given energy. Hence, any

interaction, including absorption and scattering, removes a

photon from the uncollided fluence catagory.

In order for a photopeak to be useful for source

identification purposes, it must be a minimum of three standard

deviations (sigma) above the background level. In the case of

the Poisson distribution, one standard deviation is the square

root of the number of counts in the given channel. A three

sigma level provides a 99.73 percent certainty of positive
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identification (4). Therefore, when a photopeak falls below

the three sigma level, the method of photopeak identification

is no longer reliable. Since Bayes' theorem uses a portion of

the downscattered photons for identification purposes, it

should in theory extend the range of source identification

beyond the range where the photopeaks drop below the three

sigma level.

4P
Photopeak Analysis in Practice.

In this problem, the three sigma criterion must be

evaluated at each range at which the Bayes' theorem analysis is

being performed. This involves first selecting distinct

photopeaks in each high resolution source which makes each

source unique.

Each of the original high resolution sources was examined

for one very distinct line for the purpose of comparison. In

source A the line occurs in channel 10, in source B it occurs

in channel 12, and in source C the "test" photopeak also

appears in channel 12. These photopeaks were then degraded -'

using the following assumptions:

(1) the line occurs at the center of the low

resolution channel;

(2) the line is infinitesimally narrow, so that

no photons can downscatter into the photopeak;

(3) the background (continuum) in the low

resolution bin is divided equally among all

the high resolution channels present in the bin.
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In order to examine the "best case" for the method of

photopeak identification, the relative intensity of each of

the photopeaks at the source is used to calculate the number

of uncollided counts present in the photopeak at a range of

50 meters. The count levels in the low resolution channels

are obtained from tables V.2 through V.7 (Poisson

Distribution with no background). The number of counts in

each photopeak is determined using Beer's Law. This number P

is then subtracted from the number of measured counts in the

appropriate low resolution channel, and the rest of the

counts are divided equally among the high resolution

channels, giving a smooth background level in accordance with

assumption (3) above. Figure 13 illustrates the relationship

between the low resolution bin and the high resolution

structure.

As can be seen in figure 13, as the range increases, the

photopeak will degrade in accordance with Beer's Law and the

relative background level will increase as photons

downscatter into the bin from higher energy channels.

The analysis was performed on the three photopeaks

discussed above, and the results are contained in table A-I.
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TABLE A-i

Photopeak Degradation

1. Source A

COUNTS 50 meters 100 meters 200 meters

total: 6.00 1.00 1.00

photopeak: 4.00 8.27E-9 3.87E-10

sigma: 2.39E-1 1.69E-1 1.69E-1

3 sigma: 7.17E-1 5.07E-1 5.07E-1

bkgd.: 5.71E-2 2.86E-2 2.86E-2

2. Source B

COUNTS 50 meters 100 meters 200 meters

total: 7.00 2.00 0

photopeak: 1.30 2.38E-9 0

sigma: 5.34E-1 3.16E-1 0

3 sigma: 1.60 9.49E-1 0

bkgd . 2.85E-1 1.OOE-1 0

3. Source C

COUNTS 50 meters 100 meters 200 meters

total: 1 0 0

photopeak: 1 0 0

sigma: 0 0 0

3 sigma: 0 0 0

bkgd: 0 0 0
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Appendix B: 18 Gamma Group Cross Sections

This appendix contains the data file listing of the 18

group sea level air gamma cross sections used in the

radiation transport process. All cross sections are

macroscopic, the units being inverse centimeters. The list

begins with gamma group one (highest energy group) and

continues down to group eighteen. The first two numbers in

each group (separated by a comma) represent the group

transport cross section and the group total cross section, in

that order. The next value in each group is the cross

section for scatter from group one into the current group.
I'.

The next cross section is the scatter from group two, and so

on, until within group scatter, which is the last cross

section in each group (14).

2.6781E-5,3.0663E-5 (Group 1, 8000 - 10000 KeV)

1.2991E-6

2.9082E-5,3.3578E-5 (Group 2, 6500 8000 KeV)

2. 1316E-6

1. 5056E-6

3.0430E-5,3.7458E-5 (Group 3, 5000 - 6500 KeV)

2.2584E-6

3. 2793E-6

2.3603E-6

3.4609E-5,4.2309E-5 (Group 4, 4000 - 5000 KeV)

1. 6760E-6
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2. 3213E-6

3. 486 1E-6

2. 5878E-6

3.5861E-5,4.8296E-5 (Group 5, 3000 -4000 KeV)

1. 9585E-6

2. 6055E-6

3. 7052E-6

5. 6385E-6

4.20 18E-6

4.4473E-5,5.4819E-5 (Group 6, 2500 -3000 KeV)

1. 1661E-6

1 .5069E-6

2.05 30E-6

2. 9597E-6

4.6506E-6

3.4867E-6

4.5947E-5,6.1097E-5 (Group 7, 2000 -2500 KeV)

1 .3771E-6

I1. 7477E-6

2.3 140E-6

3. 2071IE-6

4.7851E-6

7. 3590E-6

5. 1337E-6

5.2539E-5,6.8224E-5 (Group 8, 1660 -2000 KeV)

1. 1220E-6

1. 4045E-6
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1 .8185E-6

2. 4386E-6

3. 4698E-6 :
5. 0735E-6 j
7.4414E-6

5. 3179E-6

5.36I0E-5,7.5903E-5 (Group 9, 1330 -1660 KeV)

1. 3140E-6

1 . 6295E-6

2. 07 59E-6

2. 7143E-6

3. 7127E-6

5. 1831E-6

7. 2570E-6

1. 0756E-5

7.6158E-6

5.1254E-5,8.6398E-5 (Group 10, 1000 -1330 KeV)

1 .6733E-6

2. 059 7E-6

2.5888E-6

3. 3107E-6

4.36 18E-6

5.8008E-6

7.69 14E-6

1 .0725E-5

1 .5861E-5

1 .2197E-5
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6.1939E-5,9.8011E-5 (Group 11, 800 -1000 KeV)

1. 8052E-6

1.6008E-6

1 .9948E-6

2.5 154E-6

3. 2290E-6

4. 1378E-6

5S. 2363E-6

6. 8793E-6

9.4990E-6

1. 5564E-5

1 .2529E-5

5.4339E-5,1.1023E-4 (Group 12, 600 -800 KeV)

1 .6878E-6

2. 0662E-6

2. 5674E-6

3. 2143E-6

4. 0659E-6

5.0889E-6

6. 2289E-6

7. 7982E-6

1 .0093E-5

1. 5022E-5

2.5010E-5

1 .9937E-5

3.2786E-5,1.2779E-4 (Group 13, 400 -600 KeV)

1 .5137E-5
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1. 3442E-5

1. 1976E-5

1 .0767E-5

9. 9962E-6

9. 7302E-6

1. 0069E-5

1. 1029E-5

1. 2672E-5

1. 6497E-5

2 .3561E-5

3.8612E-5

3.6189E-5

4.9010E-5,1.4714E-4 (Group 14, 300 -400 KeV)

1 . 7477E-6

2. 1519E-6

2 . 6905E-6

3. 3851E-6

4. 281 7E-6

5. 3081E-6

6. 3437E-6

7 . 5724E-6

8.9861E-6

1. 1101E-5

1 .3958E-5

1 .8611E-5

3. 5381E-5

3. 7459E-5
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1.7734E-5,1.6655E-4 (Group 15, 200 -300 KeV)

1.1719E-6

1 .5017E-6

1. 979 1E-6

2.6574E-6

346515E-6

4. 9480E-6

4P 6.4615E-6

8.5 184E-6

1. 1264E-5

l~o 1.6018E-5

2. 2300E-5

2. 7297E-5

* 3.6680E-5

6. 4487E-5

6.4947E-5

*5.2605E-5,1.9710E-4 (Group 16, 100 -200 KeV)

0

0

0

0

0

0

0

0

* 0

0
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6.5306E-7

5.7746E-6

1. 9534E-5

4.5196E-5

0 °1.0160E-4

1. 4823E-4

1.4686E-4,2.4089E-4 (Group 17, 50 - 100 KeV)

0 0

0

0

0

0

0

0

p.-

4024- law

0

0

2.0558E-40

0

08.-
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02
0

0

0

0

0

0

0

0

0

0

0

0

* 0

2. 5660E-5

2.5 174E-4

899
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Appendix C: Simplifying the Three-Dimensional

Transport Problem

This appendix will outline the steps by which the

three-dimensional, time independent, radially symmetric

diffusion equation is reduced into a one-dimensional problem.

By simplifying the diffusion equation in this manner, the

approximating polynomials developed for the one-dimensional

problem in chapter III are still applicable.

Beginning with the time independent, spherically

symmetric form in three dimensions

- 1 I d r 2r + EaF f S (45)
TDp--r dr+

Next, a simple substitution is made in equation (45), as

* follows

u(r) = rF(r) (46)

By solving equation (46) for F, substituting back into

equation (45) and collecting terms, the resulting equation is

V

Dad2 u a = (47)
r dr2 r

90
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Which simplifies to the form

-D d 2 + Eau = S' (48)
dr2

where S = rS (49)

Equation (48) is in a form similar to the one dimensional

0 diffusion equation (chapter III, equation (26)) and can be

solved using the same basic code, with the modification to

the source term given by equation (49). Hence each group in

the multigroup diffusion problem is solved in terms of the

variable u, and the fluence at each node is obtained by

applying equation (46).
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Appendix D: The Analytical Solution

(Simple Case)

In order to verify the radiation transport code, it is

necessary to look at a simple case of the diffusion equation,

and obtain a solution analytically. Hence, a simple two

energy group problem will be considered, and the diffuse

solution for the lower energy group will be solved.

First, the homogeneous solution to equation (48) in

appendix C must be found

2

-D d___ + u = 0 (50)
dr

2

The homogeneous solution follows quite easily, and by

requiring the solution to remain finite with increasing

range, r, it reduces to one term.

u (r) = C exp(-(a /D) r) (51)
h

Next, the particular solution to equation (48) is determined

by first assigning u as

u p(r) =A r + A0  (52)

By differentiating equation (52) twice with respect to r and

substituting back into equation (48) from appendix C, the

92

" . ." " '. '.. - / ". " .o'.. , ... ". '. ". " . . ". -. , " % '. ' .. .%- . % 'o, .. 0 • •. ' , .



result becomes

SaA r + ZaA = rS (53)
0

By equating the like terms of equation (53), the coefficients

are determined as follows

A0 = 0 (54)

A1 = S/Ea (55) j
The final solution becomes

u(r) C exp(-(a/D) r) + SIZ r (56)

To determine the constant C, the first boundary must be

applied. Since there is only virgin flux at the origin of

• the source, the diffuse solution must be zero when r is zero,

and hence

u(O) = C = 0 (57)

Equation (56) now reduces to one term, and when it is solved

for the fluence by applying equation (46) (appendix C), it

becomes

F(r) = S(r)/ a (58)
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The initial intensity levels assigned to these two

energy groups were 0.40 counts per photon (group 1) and 0.35

counts per photon (group 2). The values of the diffusion

constant and macroscopic absorption cross section were

2.6637E+4 cm, 5.8079E-5/cm, 2.6232E+4 cm and 5.5647E-5/cm, in

that order. The results for the diffuse solution using the

analytical solution was 4.01E-11 counts per photon per square

cm, and the transport code solution for only one mesh space

was 8.65E-12 counts per photon per square cm.

L
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Appendix E: Transport Code Listing

A

This appendix provides a listing of the radiation

transport code discussed in chapter III. The subroutines are

discussed one at a time, along with a brief description of 4

the variables. Variables which are discussed in the main

program will not be discussed a second time in each

subroutine. P

When running this code, it is very important to make

dimensional changes to two of the variables, in order to

maintain the positive definite nature of the arrays which are S

processed by the IMSL library subroutines. These include the

S array in the main program and the S and the MG arrays in

subroutine diff. The S array must be dimensioned as a NV *

3 matrix and MG as a NV * 4 matrix. Here NV stands for the

number of variables, and is equal to two times the number of

nodes. As listed, the program is set up for 100 mesh spaces,

or 202 variables (the flux and current at each node). If the

number of mesh spaces is changed without redimensioning these

two arrays accordingly, the IMSL subroutines will return

error messages.

Another important note concerning this program concerns

the lines containing a "D" where a comment code "C" would

normally go. These lines are debugging lines, and are

compiled on the Harris 800 when the debug mode is used,

otherwise they are treated as comment lines (not compiled).

This code is written in Fortran 77, and extensive use
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was made of references (1) and (9), as well as Dr. Donn

Shankland's knowledge of the operatiag system. The IMSL

documentation was also extremely helpful for solving the

matrix equations in this program.

Program Description

Main Program.

The main program is responsible for calling all the p.

subroutines and finally printing out the final solution for

the fluence at each node.

List of Variables.

R - stores the ranges from the source,

XTR - stores the transport cross sections,

XR - stores the removal cross sections,

XT - stores the total cross sections,

XS - stores the scattering cross sections,

SG - stores one group s removal cross sections,

C - stores the boundary conditions cl,c2,dl,d2,

B - stores the boundary conditions el,e2

DD - stores the diffusion constants for one group,

S - stores the source matrix from Simpson's approx.,

CI,C2,DI,D2 - boundary conditions,

E1,E2 - boundary conditions,

T - stores values of I, 2*PI & 4*PI,

MAXN - maximum number of nodes,

MAXMAT - maximum number of materials (I in this prob.),

N - number of nodes,
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K - geometry factor,

MAT- stores the material number, O

NMAT - number of materials,

NC - IMSL subroutine variable,

I -integer counter, .0

NV - number of variables,

MAXG - number of groups used.

Subroutine GDATA.

This subroutine retrieves the basic data for setting up

the appropriate mesh spacing.

List of Variables. 0

A, AA, B, BB, C - position varibles,

NR - number of regions,

MN -material number, t

NS - number of mesh spaces per region,

M - position variable.

Subroutine MDATA.

This subroutine retrieves data on each different group

and each different material.

List of Variables.

I, J, K - integer counters.

Subroutine BDATA.

This subroutine retrieves the boundary data and sets up

the C matrix.

Subroutine BOUNDR.

This subroutine computes the boundary condition matrix,

C, in the case of the radiation transport problem, due to the
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energy dependent boundary conditions.

Subroutine DIRECT.

This subroutine calculates the direct fluence at the

nodal points and at the midpoints of each mesh interval,

values which are modified in subroutine TERM and ultimately P

used in the Simpson's approximation.

List of Variables.

GROUP - the current group number,

IA - the current interval number (mesh space),

GAMMA - stores the initial intensity levels of

all the groups,

DPHI - stores the direct fluence at each node,

MPHI - stores the direct fluence at each

half node,

MULT -temporary storage variable,

MIDPT - the midpoint of the interval.

Subroutine TERM.

This subroutine modifies the direct fluences into the

source term used by the Simpson's approximation.

List of Variables.

IH - group counter for downscatter calculations,

MSOURCE - source term at mid-interval,
N .2

DR- distance from the left node to the

midpoint of the current interval.

Subroutine DIFF.

This subroutine sets up and solves the matrix equation

derived in chapter III. In arriving at the solution for the
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C
C solve for lambdas
C
D PRINT*,''
0 PRINT*,'entering LEOT1P to solve for lamdas'

CALL LEQT1P (Q,1,2,R,2,ID,01,D2,IR)
o PRINT*,' solution follows (iamdas):'
O PRINT*,' LAMOA 1 =',R(1)
D PRINT*,' LAMD1A 2 =',R(2)

C
C add boundary terms to the free solution
C

D PRINT*,' entering SAXPY to add in boundary terms
DO ?7I= 1,2p

CALL SAXPY (NV,R(I),S(1,I+1),1,S,1)
7 CONTINUE
D PRINT*,''
D PRINT*,' the solution for the variable U follows'
O PRINT*,' (for fluence*r AND current*r)'
D PRINT*,' (still in subroutine 01FF)'
D DO 500 IP = 1,NXI
D PRINT*,S(IP,1),S(IP,2),S(IP,3)
0500 CONTINUE
C since the solution is in terms of the arbitrary
C variable "U", which is equal to R * FLUENCE,
C we must now SOLVE for the scattered fluence by
C diviiding "U" by R at each node and putting the
C solution back in the matrix "S".

D0 600 I1 1,NV,2
IX = 1 (1/2 - 0.5)
xX(1) =1

D PRINT*,'S(',I,',1) =',S(I,1)
D PRINT*,'XX('I,') =',Xx(Ix)

5(1,1) = S(I,1)/XX(IX)
O PRINT*,S(I,1)
500 CONTINUE
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C
C solve the main matrix problem
C

o PRINT*,''

D PRINT*,' entering LEQ1PB
D PRINT*,"

CALL LEQ1PB (MG,NV,3,NV,S,NV,3,IDGT,D1,D2,IER)

D PRINT*," .O
D PRINT*,' the solution for tO, tl & t2 follows:'

D 0O 138 IY = 1,NV

o PRINT*,S(IY,1),S(IY,2),S(IY,3)

0138 CONTINUE

C

C compute the small matrix a
C

K=O
D PRINT*,''

D PRINT*,'entering VIPRFF imsl subroutine now...'

D PRINT*,''

D PRINT*,"

D PRINT*,'the pre-VIPRFF C matrix follows:'

D 00 145 IT = 1,NV
D PRINT*,C(IT,1),C(IT,2)

D145 CONTINUE

00 200 I = 1,2
CAL'- VIPRFF (C(1,I),S,NV,I,I,R(I))

0 PRINT*,'"

D PRINT*,'for i =',I

O PRINT*,'R(',I,') =',R(I)

0 PRINT*,'B(',I,') =',8(I) "
R(I) = B(I) - R(I)

D PRINT*,'B(I) - R(I) =',R(1)

00 150 J = 1,1

K =K + 1

0 PRINT*,''
0 PRINT*,' entering VIPRFF again ... '

CALL VIPRFF(C(1,I),S(1,J+1),NV,1,1,Q(K))

D PRINT*,' for j=',J

0 PRINT*,' and k =',K

0 PRINT*,' Q(',K,') =',Q(K)

150 CONTINUE

200 CONTINUE
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C
C compute the source term
C
C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
C add in the downscatter contribution . .. C
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

DO 80 IH = 1, 10-1

CALL TERM'(N,MAT,IG,IH,XX,XS,PHI,SOURCE,
PiPHI ,MIDPT,IAS'1SOURC,XT)

C return with "SOURCE" array values and compute
C the source matrix using Simpson's Approximation.
C NOTE: downscattered sources are added in to the
C inscattered source already present in the "S" array.

SA = H * SOURCE(IA)/6
SS = H * MSOURC / 3
SC = H * SOURCE(IA+1)/6
S(K+1,1) = S(K+1,1) + SA + SB
S(K+2,1) = S(K+2,1) - .25*H*SB/O
S(K+3,1) = S(K+3,1) + SB + SC
S(K+4,1) =S(K+4,1) + .25*H*S8I0

80 CONTINUE
C
C insert boundary conditions
C

D0 90 J=1,2
S(K+1,J+l) = C(K+1,J)
S(K+2,J+1) = CCK+2,J)

90 CONTINUE
100 CONTINUE

IA =NI + 1S
K =IA + IA - 2

00 125 3 = 1,2
S(K+1,J+l) = C(K+1,J)
S(K+2,J+1) = C(K+2,J)

125 CONTINUE
0 PRINT*,''
0 PRINT*,' the MiG matrix follows (banded form).
0 00 135 IZ =1,NV
0 PRINT*,P1G(IZ,1),rn(IZ,2),MG(IZ,3),MG(IZ,4)
0135 CONTINUE
o PRINT*,"'
0 PRINT*,'the source matrix follows (s,clqc2) . . .
0 00 136 IZ =1,NVJ
0 PRINT*,S(IZ,1),S(IZ,2),5(IZ,3)
0136 CONTINUE
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C
C now, build each local matrix (for each interval)
C

NI =N-1

o PRINT*,'N =',N
o PRINT*,'NV =',NVJ
D PRINT*,'NI =',NI

00 100 IA = 1,NI
D=00(IA)
H=XX(IA+l) - XX(IA)

0 PRINT*,'for interval number',IA
D PRINT*,' 0 = ',D

0 PRINT*,' XX(IAi-) =',XX(IA+l)
0 PRINT*,' XX(IA) = ',XX(IA)P
0 PRINT*,' H H
D PRINT*,'SG(IA) =',SG(IA)
0 PRINT*,"I

r'L(l ,1,IA)=1 .2*0/H + 13.*SG(IA)*H/35.

PL(2,l,IA)=-0.l - 11.*SG(IA)*H*H/(210.*0)
M1L(3,l ,IA)=-1 .2*0/H + g.*SG(IA)*H/70.
MYL(4,1,IA)=-0.1 + 13.*SG(IA)*H*H/(420.*0)

M~L(2,2,IA)=(D/(30.*H)+H*SG(IA)/420.) * (2.*H/D)**2
rL(3,2,IA)=-4YL(4,1,IA)
fML(4,2,IA)=-(0/(30.*H)+H*SG(IA)/140.) *(HID)**2

rML(3,3,IA)=ML(1 ,i,IA)

M'L (4,4, IA) =flL(2,2, IA)
C now fill in the rest of the elementsC

00 30 I = 1,3

IP= I+ 1
00 20 J3 IP,4

i'L(I,J,IA) M 'L(J,I,IA)
20 CONTINUE
30 CONTINUE

0 PRINT*,"I
0 PRINT*,' echo the local matrix now
0 DO0351Z = 1,4
0 PRINT*,ML(IZ,l,IA),ML(IZ,2,IA),ML(IZ,3,IA),MYLCIZ,4,IA)
035 CONTINUE
C
C assemble the global matrix now

C
K=IA+IA-2
00 50 I = 1,4

00403J = 1,I

MG(K+I,4+J-I )=MGI(K+I,4+J-I)+ML.(I,J,IA)
46 CONTINUE

50 CONTINUE

0 PRINT*,"'
0 PRINT* ---------------------------------------
0 PRINT*,' GROUP',IG,' INTERVAL',IA

0 PRINT* - - - - - - - - - - -- - - - - - - - - - -
0 PRINT*,''
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* SUBROUTINE DIFF *

SUBROUTINE DIFF(S,C,B,XX,DD,SG,NV,N,NG,XS,XT,MAT,IG,T)

INTEGER NV,N,NI,IG,IH,INSCATTER,NG,MAT(*),K,IA

REAL O,DO(*),H,SG(*),SA,SB,SC,SOURCE(1O1),T(3)

+ Dl,D2,MG(22,4),ML(4,4,100),S(22,3),C(202,2)

REAL B(*),R(2),Q(3),XX(I01),XS(5,21,21),DPHI(I01),XT(5,21)

+ ,MPHI,MIDPT,MSOURC,PHI(18,101) .

C

C This subroutine uses the FINITE ELEMENTS METHOD to
C solve the one-dimensional diffusion equation.

C

C MA = 1/(30*H) * 36

C -3H/D (2H/0)**2

C -36 3H/D 36

C -3H/D -(H/D)**2 3H/D (2H/0)**2
C

C MB = H/420 * 156

C -22H/D (2H/O)**2

C 54 _13H/D 156

C 13H/0 -3(H/D)**2 22H/D (2H/D)**2

C
C note: these matrices come from the quadratic terms of the
C penalty function and are symmetric (hence the blank

C entrees in the upper portions).

C
NV =2 * N

O PRINT*,'echo of C matrix within subroutine diff...'

0 PRINT*,"

D DO 10 1 = 1,NV

D PRINT*,C(I,1),C(I,2) 4

D10 CONTINUE

C ZERO THE ARRAYS

DO 3 1 = 1,NV
DO 4 J = 1,3

C ZERO OUT THE GOBAL MATRIX

MG(I,J) = 0.0
C ZERO OUT THE SOURCE MATRIX

S(I,J) = 0.0

4 CONTINUE

C ZERO OUT THE LAST COLUMN OF THE GLOBAL MATRIX

MG(I,4) = 0.0

3 CONTINUE
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* SUBROUTINE TERM

SUBROUTINE TERM (N,MAT,IG,IH,R,XS,PHI,SOURCE,
+ MPHI,MIOPT,IA,MSOURC,XT)

REAL R(1O1),XS(5,21,21),PHI(18,1O1),SOURCE(*),MPHI,MIDPT,

+ MSOURC,OR,XT(5,21)

INTEGER N,MAT(*),IG,IH,IA
C this subroutine computes the source term which is used
C in the Simpson's Rule Approximation for the integrand
C term: -2FSprime.

I C NOTE: since Sprime =rS, the source term becomes:
C XS*R*OPHI
C

D PRINT*,"'
D PRINT*,'in subroutine TERM .
O PRINT*,"'
D PRINT*,'IG =',IG,'IH =',IH

00 200 I = 1,N-1
SOURCE(I) = XS(MvAT(I),I,IH)*PHI(IH,I)*R(I)

200 CONTINUE
SOURCE(N) = XS(MAT(N-1 ),IG,IH)*PHI(IH,N)*R(N)

O PRINT*,'(IG STILL ',IG,') IH =',IH
D PRINT*,'XS(IG,IH) =',XS(P1AT(N-1),IG,IH)
C now calculate the 4(pi)r**2 fluence at the left side of
C this interval . . .

MIOPT =0.5 * (R(IA) + R(IA+1))
PHI =4 * 3.1415926 * (R(IA)**2) * PHI(IH,IA)
DR = PlIOPT - R(IA)

D PRINT*,IR(IA) =',R(IA),' MIOPT =',MIDPT,' DR =',DR
O PRINT*,' IA =',IA,' & IA+1 =',IA+l
C calculate the fluence at mid-interval using
C exponential loss by absorption ONLY (sigma removal).

MPHI = MPHI * EXP(-XT(MAT(IA),IH)*DR) / (4*3.141593*YIDPT**2)
MSOURC = XS(MAT(IA),IG,IH) * MPHI * MIOPT

D PRINT*,' MSOURC =',MSOURC
D PRINT*,' SOURCE(IA) =',SOURCE(IA)
D PRINT*,' SOURCE(IA+1) =' ,SOURCE(IA+l)

END
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C assign th e e9er fcto "K. inM nex line-i

C

K 2
MULT = GAM''A(GROUP)

C iterate over all the nodes

00 100 I = 1,N
IF (I.EQ.1) THEN

R(I) = 1

C i.e., set the left boundary =1 cm

OPHI(1) = M~ULT/(T(K)-R(1)**K)

H(I) =R(I) - R(I-1)

OPHI(I) =MULT/(T(K)*R(I)**K)

ENDIF
100 CONTINUE

C ends loop over all nodes
C
C now calculate the third direct fluence value, that is,

C the value in the middle of the interval of interest.

C
PlIOPT =0.5 *(R(IA) + R(IA+1)).

MIPHI =GNYP1P(GROUP) * EXP(-XT(MAT(IA)tGORUP)*qIDPT)
+ /(T(K) * MIOPT**K)

D PRINT*,'DPHI at IA =',IA,' is =',OPHI(IA)

O PRINT*,'DPHI at IA+1 =',IA+1,' is =',DPHI(IA+l)

O PRINT*,'MYPHI =',MPHI

o PRINT*,'MIDPOINT =',MIOPT

END 1
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* SUBROUTINE DIRECT

SUBROUTINE DIRECT (N,T,R,M1AT,XT,DPHI,GORUP,IA,1PHI,P1IOPT)
C
C this subroutine computes the direct fluence at each
C node for each group, filling the "OPHI" array.
C

REAL R(*),XT(5,21),PHI(11),AYMA(18),T(3),MVULT,H(101)
+ ,MPHI,MIDPT

INTEGER N,K,MAT(*),GROUP,IA
0 PRINT*,"'
O PRINT*,' in subroutine DIRECT
O PRINT*,"'
O PRINT*,'GROUP =',GROUP

GAIWIMA(1) = 0.0
GAMM'A(2) = 0.0
GAI'I'A(3) = 0.0
GAMM~A(4) = 0.0
GAIMIMA(5) = 0
GAMMPA(6) = 0.33
GAr'1MA(7) = 0.13
GAr'T'A(8) = 0.05
GAI'FA(9) = 0.10
GAM~A(10) = 0.25
GA''A (11 ) = 0.01
GAMM'A(12) = 0.03
GAPWA(13) = 0.03
GACPA (14) = 0.04
GAIMPA(15) = 0

*GAPWA(16) = 0.03
GAMMWA(17) = 0
GAMMPA(18) = 0

105



* SUBROUTINE BOUNOR

SUBROUTINE BOUNDR(C,C1 ,C2,D1 ,02,OO,SG,N,NJ)
REAL C(202,2),C1,C2,O1,02,OO(*),SG(*)
INTEGER N, NV

C
*C This subroutine sets up the C-matrix for each energy

C group & passes it back to the main program. This
C subroutine is necessary in the radiation transport
C problem ONLY when the boundary conditions require terms
C that are energy dependent.
C

*02 = (OD(N-1)*SG(N-1))**0.5
O PRINT*,"'
D PRINT*,'N-1 =',N-1,'OO =',OD,'SG =',SG

C(1,1) = C1
C(2,1) = D1

C(NV-1,2) = C2
C(NV,2) = 02

O PRINT*,'echo of C-matrix in subroutine BOUNOR:'
D DO 100I1= 1,NV
D PRINT*,C(I,1),C(I,2)
0100 CONTINUE

END
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* SUBROUTINE BOATA *

SUBROUTINE BOATA (MAXG,NG,NV,C1,C2,O1,02,EI,E2,C)

C

C this subroutine reads in boundary data and

C computes the boundary matrix.

C

REAL El(*),E2(*),Cl,C2,O1,D2,C(202,2)

INTEGER MAXG,NG,I,NV

o PRINT*,' entering BDATA subroutine . .

PRINT*,'ENTER Cl,C2,D1,D2 (AS SHOWN)'

READ*,Cl,C2,DI,D2

PRINT*,'ENTER ONE VALUE OF El FOR EACH ENERGY GROUP'

PRINT*,'BEGIN WITH HIGHEST GROUP (#), PUTTING EACH ENTRY'

PRINT*,'ON A SEPARATE LINE.'

DO BO I = I,NG
READ*,E1(I)

80 CONTINUE

PRINT*,'NOW REPEAT FOR E2'

DO 90 I = I,NG
READ*,E2(I)

90 CONTINUE

C
C now construct the "C" matrix (boundary cond. matrix)

C

C(l,l) = Cl

C(2,1) = Dl
C(NV-1,2) = C2

C(NV,2) = 02

D PRINT*,'echo the C matrix in BOATA subroutine'

0 DO 100 = I,NV

O PRINT*,C(I,l),C(I,2)

0100 CONTINUE

END
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* SUBROUTINE MOATA

SUBROUTINE MDArA(MAXMAT,MAXG,NI'AT,NG,XTR, XT,XS,XR)
C
C this subroutine reads in material data.

0C
REAL XTR(5,21) ,XT(5,21) ,XS(5,21 ,21 ),XR(5,21)
INTEGER NG,MAXMAT,MAXG,NM'AT,I,J,K

0 PRINT*,''
O PRINT*,' entering MOATA subroutine now
D PRINT*,"

0 PRINT*,'ENTER THE NUMBER OF DIFFERENT MATERIALS USED'
READ*,M1AT
PRINT*,'ENTER THE TOTAL NUM'BER OF ENERGY GROUPS'
READ*,NG

C read in cross sections beginning with transport and total
00 201 = 1,NMAT

00 60 J=1,NG
PRINT*,'ENTER MATERIAL'I,', GROUP',J, CROSS SECTIONS'

PRINT*,'sigma tr, sigma t: SEPARATE BY COMM1'AS.'
READ*,XTR(I,J),XT(I,J)

C now read in the scatter cross sections

PRINT*,'NOW ENTER THE SCATTERING CROSS SECTIONS.'

PRINT*,'BEGIN WITH SCATTER FROM HIGHEST ENERGY GROUP'

PRINT*,'AN STEP THROUGH GROUPS UNTIL WITHIN GROUP SCATTER'

PRINT*,'EX. 1->IG, 2->IG . (IG-1)->IG IG->IG'

00 70 K = 1,j
READ*,XS(I,",K)

*70 CONTINUE
C compute the removal cross section from total and scatter

XR(I,J) =XT(I,J) -XS(I,J,J)

60 CONTINUE
20 CONTINUE

MAXG = 

-' END

102



* SUBROUTINE GDATA *

SUBROUTINE GOATA (MAXN,MAXMAT,R,MAT,N,K)

REAL R(*)
REAL A,B,C

INTEGER NR,K,AA,MN,NS,BB,M,MAT(*),N,I

PRINT*,'ENTER THE NUMBER OF REGIONS'

READ*,NR

PRINT*,'ENTER THE LEFT BOUNDARY LOCATION'

READ*,A

PRINT*,'ENTER THE GEOMETRY TYPE, K=?'

READ*,K

AA=I

00 50 1 = 1,NR
PRINT*,'ENTER THE RIGHT HAND BOUNDARY FOR REGION ',I

READ*,B

PRINT*,'ENTER THE # OF MESH SPACES FOR THIS REGION'

READ*,NS

PRINT*,'ENTER THE MATERIAL NUMBER'

READ*,MN

C = (B-A)/NS

BB = AA + NS

DO 5 M = AA,BB

IF (M.EQ.AA) THEN

R(M)=A

ELSE

R(M) = A + C
A = R(M)

ENDIF

5 CONTINUE

DO 10 M = AA, BB-1
MAT(M) = MN

10 CONTINUE

AA = BB

MAXN=N

MAXMAT = BB-1

50 CONTINUE

END
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*: * MULTI-GROUP DIFFUSION EQUATION CODE *

* (WITH FINITE ELEMENT METHOD) *

* DATE WRITTEN: 28 OCT 1984 *

* AUTHOR: L. WAYNE BRASURE *

REAL R(I01),XTR(5,21),XR(5,21),XT(5,21),XS",21,21),SG(1O0)

REAL C(202,2),B(2),DO(100),S(22,3)
REAL CI ,C2,D1 ,D2,E1 (21) ,E2(21 ),T(3)
INTEGER MAXN,MAXMAT,N,K,MAT(100),NMAT,NC,I,NV,NG,MAXG

* T(O) = 1

T(1) = 6.2832

T(2) = 12.5664

MAXG = 21
D PRINT*,'entering data entry phase of program ...

D PRINT*,"

CALL GDATA (MAXN,MAXMAT,R,MAT,N,K)

NV = N *2
CALL MDATA(MAXMAT,MAXG,NMAT,NG,XTR,XT,XS,XR)

CALL BDATA(MAXG,NG,NV,C1,C2,D1,D2,EI,E2,C)

O PRINT*,"

D PRINT*,'echo of C matrix within main program . . .

* 0 PRINT*,"

O O0 10 I = 1, NV

D PRINT*,C(I,1),C(I,2)

D10 CONTINUE

DO 999 IG=1,NG

DO 50 I = 1, N-i

SG(I) = XR(MAT(I),IG)

D(I) = 1./(3.*XTR(MAT(I),IG))

D PRINT*,'echo SG(',I,') =',SG(I)

O PRINT*,'echo DO(',I,') =',DD(I)

50 CONTINUE

B(1) = EI(IG)

8(2) = E2(IG)

CALL BOUNDR(C,C1,C2,D1,D2,DD,SG,N,NV)

CALL OIFF(S,C,B,R,OD,SG,NV,N,NG,XS,XR,MAT,IG,T)

PRINT*,"

PRINT*,"

PRINT*,' THE SOLUTION FOLLOWS === GROUP',IG

PRINT*,"

PRINT*,''

D PRINT*,S(NV-1,1)
O0 60 I = 1,NV,2

IX = I - (1/2 - 0.5)
PRINT*,' at R =',R(IX),'cm, F =',S(I,1)

60 CONTINUE

C now end the iteration over all energy groups . . .

999 CONTINUE

END
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fluxes and currents at each node, it sets up the local and

global matrices for each group (one at a time), performs the

Simpson's approximation, and solves the series of matrix

equations (using IMSL subroutines) in order to arrive at the

solution for each group. Each group calculation is performed

separately, beginning with the highest energy group, group

one. The solution is stored in the S matrix, printed out,

0 and then the subroutine moves on to the next lower group.

List of Variables.

NI - the number of mesh intervals,

V INSCATTER - 1 if doing an inscatter calculation,

D - diffusion constant in current interval,

H - width of current interval,

• SA, SB, SC - variables used in Simpson's approx.,

SOURCE - stores the source term used in Simpson's

approx.,

* XX - stores the positions of each node,

R, Q - variables used in solving linear equations

in conjunction with IMSL subroutines.
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C we now have the FLUENCE due to scattering and
C must add this to the direct fluence at each node.
C
C first, we must calculate the direct fluence for this

C energy group at each node.

C CALL DIRECT(N,T,XX,P1AT,XT DPHI ,IG,IA,MPHI,MIOPT)

PRINT* - - - - - - - - - -- - - - - - - - - - -

PRINT*,"'
PRINT*,' Scattered Fluence for Group',IG,' is =',S(NV-1,1)
PRINT*,' & the Direct Fluence =',DPHI(N)

00 700 I = 1,NIJ,2
IX = I -(1/2 - 0.5)

0 PRINT*,'S(',I,',l) =',S(I,l)

0 PRINT*,'DPHI(',IX,') =',DPHI(IX)
s(I,1) = S(1,1) + OPHI(IX)

0 PRINT*,'S(',I,',1) =',S(I,l)
C put the solutions for this energy group into the

gC "PHI"1 array, to be used for the downscattered
C contribution for the lower energy groups.

PHI(IG,IX) = s(I,1)
0 PRINT*,' for IX =',IX,' and 113 =',IG
0 PRINT*,' PHI(IG,IX) =',PHI(IG,IX),' S(1,1) =',S(I,l)
700 CONTINUE

C return control
C

END

6-
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Appendix F: Generating Poisson and Multinomial

Reference Values

This appendix briefly discusses the way in which the

reference source spectra were arrived at for both the Poisson

and multinomial versions of the Bayes' theorem analysis.

Both methods use the numbers generated by the "channel

percentage converting program" which is listed in this

appendix. This program converts the raw transport data

contained in tables III-I through 111-6 into a form

acceptable to the Bayes' theorem analysis codes discussed in

appendix H.

Program Algorithm and Use

For each of the three sources at each of the ranges

given, the program inputs the number of counts per photon in

each channel. The program -utput includes the total counts

per photon for the given source as well as a listing of the

proportion of counts in each channel (the sum of all channels

being unity).

The total counts per photon value is used to determine

the total number of counts for each source at any given

distance. For instance, if at a distance of 50 meters,

measurements of equal time (Poisson) or of equal counts

(multinomial) yield 10,000 counts (assigned arbitrarily),

then the number of counts at all other ranges can be

determined for all sources. For source A at 100 meters, the
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tota c(s

total counts per photon (all channels) of source A is divided

by the total counts per photon (all channels) of source A at

50 meters, and multiplied by the number of counts at 50

meters. This yields the folowing: 9.12E-1O/3.16E-9 * 10000 =

2816.7. So that 2816.7 counts will be obtained (2817 for the

multinomial analysis). The reference sources will be

constructed from this type of data, as discussed in the next

two sections.

Poisson Reference Sources

The first step in the process is to assign a level of

counts at the 50 meter range. Then, using the method

discussed above, the number of counts for all three sources

at each range is calculated. Next, using the proportion of

counts in each channel, the number of counts in each channel

is determined. This results in three reference sources at

* each range.

Multinomial Reference Sources

To obtain the multinomial reference sources, the total

number of counts for each source at each range is determined

in the same manner as above. The reference sources at each

range consist simply of the proportions in each channel

(recall the form of the multinomial distribution).

Program Output

The output from this program has been surpressed, since
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it follows readily from tables III-i through 111-6.

List of Variables

integer:

COUNTS = counts/photon in each channel,

N = source number (1-3),

NN = scientific notation subroutine variable,

SUM = total counts/photon (all channels),

real:

XX = scientific notation subroutine variable.
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9 10 REM

20 REM ........................................
30 REM +

35 REM + CHANNEL % CONVERTING PROGRAM +
40 REM + By L. Wayne Brasure +
50 REM + December 1984 +

* 55 REM + +

60 REM ........................................

70 REM

80 DIM COUNTS(18)

85 INPUT " Enter the source number =>";N

90 INPUT " Enter the range (in meters) =>";RANGE
100 PRINT " Enter the counts per photon for each channel indicated :"

110 SUM = 0

120 FOR I = 1 TO 18

130 PRINT " Channel Number ";I;" =>"
140 INPUT COUNTS(I)

150 SUM = SUM + COUNTS(I)
160 NEXT I

170 PRINT "For Source Number ";N;", at R = ";RANGE;" meters:"

175 PRINT
180 PRINT " total counts per photon =";SUM

185 PRINT

190 PRINT " (channel breakdown follows)"

200 PRINT

210 PRINT " CHANNEL NUMBER PERCENT OF TOTAL COUNTS"

220 PRINT "

225 PRINT ""

230 NN = 4

235 REM +++++ print out the table now . . .

240 FOR I 1 TO 18
250 COUNTS(I) = COUNTS(I) / SUM

253 PRINT "

255 XX = I: GOSUB 2100: PRINT "

260 XX = COUNTS(I)

270 GOSUB 2100

275 PRINT

280 NEXT I

290 PRINT

300 INPUT " Care for another run? Enter (1] for yes =>";ANS

310 IF (ANS = 1) GOTO 85

320 END
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2100 REM
2110 REM ....................... .--
2120 REM + SCIENTIFIC NOTATION SUBROUTINE +

2190 REM ........................................
2200 REM

2210 REM

2220 IF NN < 0 OR NN > 8 THEN PRINT "RANGE ERR";: RETURN

2230 EX = 0: IF XX = 0 THEN MT$ = "0.": GOTO 2250

2240 MT = VAL ( STR$ ( ABS (XX))): GOSUB 2260: IF NN < 8 THEN MT= MT +

5 10 ( - NN): GOSUB 2260
2250 PRINT MID$ ("+-",(XX < 0) + 1,1); LEFT$ (MT$ + "00000000",NN + 2);"

E"; MID$ ("+-",(EX < 0) + 1,1); RIGHTS ("0" + STR$ ( ABS (EX)),2);: RETURN
2260 IF MT > = 10 THEN MT = MT / 10:EX =EX + 1: GOTO 2260

2270 IF MT < 1 THEN MT = MT * 10:EX = EX - 1: GOTO 2270
2280 MT$ = STR$ (MT): IF MID$ (MT$,2,1) < > "." THEN MT$ = MT$ +
2290 RETURN -

--.

i 8 S:"

IV
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Appendix G: Generating Measured Source Spectra

This appendix will address the method of generating the

measured source spectra during the analysis section of the

problem. The method will be discussed separately for each of

the three types of statistical distributions used.

Poisson Random Number Generator ref. (11) & (16)

Algorithm Description.

The Poisson distribution inputs the reference sources in

the form of number of counts in each channel (units = ','

counts), unlike the multinomial distribution format. One of

the three reference sources is selected as the source which

is to be "measured," and the measured source array is

initially assigned as this particular reference source.

The Poisson random number subroutine first generates a

random number between between 0 and 1 (inclusive) and assigns

the value to the variable NUM. An integer is incremented,

beginning at 1, and is stored in the variable N. The

probability of obtaining this number N is calculated using

the Poisson distribution with the number of reference counts

in the channel serving as the mean. The probability is next

compared with the random number, and the integer N is

increased until the probability is greater than the random

number, NUM. This process is repeated for all 18 channels.

List of Variables.

integer:
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IG = channel counter,

N = number of measured counts,

U = number of counts,

real:
MPHI(18) = measured source array (ends up an integer),

NUM = random number variable,

P = probability variable,

"0 T = probability variable,

Y = number of reference counts variable.

Gaussian Random Number Generator ref. (16)

Algorithm Description.

The Gaussian random number generator begins in the same

manner as does the Poisson random number generator, with the

MPHI array initially equal to the chosen reference source.

Next, for each channel of the measured source, twelve random

OP numbers are generated, since the uniform random number

generator approximates the Gaussian distribution with this

many repetitions (16). Each time a random number is

generated, it is added to the number of counts in the given

channel less 6. After all the numbers have been generated,

the resultant real number of counts is rounded to an integer

number of counts.

List of Variables.

integer:

IG = channel counter,

IMPHI(18) = final measured source array,
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real:

MPHI(18) = initial measured source array,

X = random number variable,

Y f reference counts in a channel minus 6.

Multinomial Random Number Generator ref. (16)

Algorithm Description.

Unlike the Poisson and Gaussian distributions, the

multinomial distribution subroutine inputs the reference

sources as fractions of counts in each channel (units =

counts/photon). To generate a measured spectrum, one of the

reference sources is selected as before. The fractions in

each channel are converted into a cumulative distribution, so

that the last channel in the MPHI array will contain a value I
of 1.

The multinomial random number generator then assigns

each one of the total counts available to one of the channels

in the measured source array as follows. First, a random

number between 0 and I is generated, which is then compared

L. with the cumulative probability in each channel of the MPHI

array. When the random number is less than the cumulative

probability in one of the channels, the count is added to

that particular channel. This process continues until all

the available counts have been depleted, leaving a new

measured source spectrum.

List of Variables.

integer:
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I = total count incrementor,

IG = channel number counter,

MPHI(18) = measure source array,

NC(18) = counting array,

SUM = total number of counts available,

T = channel number counter,

real:

X = random number variable.

Subroutine Listings.

The random number generators are listed with the main

analysis programs in appendix H.

S
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Appendix H: Analysis Code Listings

This appendix describes and lists the three codes used

to generate the measured source spectra and perform the

Bayes' theorem analysis. There is one code for each of the S

statistical distributions used: Poisson, Gaussian and

multinomial. The first code listed is the Poisson version,

and will be listed in its entirety. To obtain the Gaussian

code, two subroutines need to be replaced: the RANDOM

subroutine and the POISSON subroutine. Subroutine RANDOM was

discussed in appendix F, and will not be discussed further.

The listing of the two new subroutines (RANDOM and GAUSSIAN)

begins on page 132. Similarly, in the multinomial code, only

those subroutines which are different from the Poisson code

will be listed and described. The multinomial listing begins

on page 133.

All analysis codes were written in BASIC to run on the

Apple II series of computers, and minor modifications will

translate them into forms which can be run on almost any

microcomputer.

The Bayes' with Poisson Program

Main Program.

The main program inputs the number of channels (energy

groups) and the range at which the analysis will be

performed. It then calls the subroutines to solve for the

Bayes' posterior distribution, and prints out the results.
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The calculations are performed for one measured source at a

time at one range.

List of Variables.

RPHI - stores the three reference source spectra,

MPHI - stores the measured source spectrum,

NC stores the number of counts in each channel

of the measured spectrum,

P - stores P(XIAi) value of each source,

H$ - string array used in reading data

from data files,

RANGE - distance from the source at which the

anlysis is performed,

NG - the number of channels in each source,

P1, P2, P3 - comprise the posterior distribution,

NN, XX - scientific notation variables,

ANS -integer value I continues program

execution.

Subroutine REFERENCE.

This subroutine retrieves the reference sources from

data files stored on disk. It feeds the data into the RPHI

array.

Subroutine MEASURED.

This subroutine fills up the MPHI array with the values

from whichever source has been selected.

Subroutine RANDOM.

This subroutine generates the measured source spectrum b

using the Poisson distribution. Refer to appendix F for
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details on this subroutine. "*A

Subroutine BAYES.

This subroutine performs the Bayes' theorem analysis as

depicted in equation (30) of chapter IV.

List of Variables.

Al, A2, A3 - the assumed prior distribution

of the reference sources,

DENOM - stores the denominator in equation (30),

Xl, X2, X3 - the values of P(XIAi) returned by

subroutine POISSON.

Subroutine POISSON.

This subroutine calculates the values of P(XjAi) using

the Poisson distribution, as discussed in chapter IV.

List of Variables.

S - reference source counter,

P- stores the final values of P(XIAi),

IG - channel counter,

I - count level counter,

FT - temporary storage variable,

TERM - temporary storage variable. -

Scientific Notation Subroutine.

This "canned" subroutine formats the output on the Apple

lie computer and was written by John Baldwin of Erie, •

Pennsylvania.

Data Retrieval Subroutine.

This subroutine retrieves text data from disk and

converts it into numerical data for use in the program.
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The Bayes' with Gaussian Program

Listing begins on page 132.

Main Program.

The main program is identical to the Poisson version, S

and hence, only the two new subroutines will be discussed.

Subroutine RANDOM.

This subroutine generates the measured source spectrum P
using the Gaussian distribution. Refer to appendix F for

details on this subroutine.

Subroutine GAUSSIAN.

This subroutine calculates the values of P(XIAi) using

the Gaussian distribution, as discussed in chapter IV.

The Bayes' with Multinomial Program

Listing begins on page 133.

Main Program.

The main program is basically the same as the Bayes'

with Poisson program, so once again, only the new subroutines

will be discussed.

Subroutine MEASURED.

The modification to this subroutine is to calculate the

cumulative probability in each channel of the array MPHI, in

order to calculate a measured spectrum using the multinomial

random number generator discussed in appendix F.

Subroutine RANDOM.

This subroutine generates the measured source spectrum
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This report shows that gamma ray spectra identification

using Bayes' Probability Theorem can be used to extend positive

identification ranges when compared with the method of photopeak

identification. In this study, Bayes' Theorem methodology extended

the range of positive identification a minimum of 50 meters in a low

count environment. These results are based on spectra generated using

the Finite Element Method in conjunction with Poisson counting statistics.
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5550 REM +++++ Now factor in the last few factorial terms:

5560 TI = SUM - TI - 1

5565 IF (TI < 1) GOTO 5600

5570 FOR I = TI TO 1 STEP - 1
5580 P(S) = P(s) * I

5590 NEXT I

5600 NEXT 5

5610 X1 = P(1): PRINT "X1 = ";X1
5620 X2 = P(2): PRINT "X2 = ";X2

5630 X3 = P(3): PRINT "X3 = ";X3

5700 RETURN

5800 REM +++++ a factorial fix-all begins here:

5810 P(S) = P(S) " (SUM - TI)

5820 TI = TI + 1
5830 GOTO 5240

I.-

.. °

.L
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5000 REM

5010 REM .+++++++++++++++++++++++++++++++++++++

5020 REM + SUBROUTINE MULTINOMIAL +

5030 REM .+++++++++++++.+++++++++++++++++++++++++

5040 REM

5050 REM +++++ Bubble sort the MPHI array, and place

5060 REM .++++ the RPHI values in a corresponding order.

5062 SWITCH = 1

5063 IF (SWITCH = 0) COTO 5080: REM (go to end statement).

5064 SWITCH = 0: REM (0 if sort is complete)

5065 FOR I = 2 TO NG

5066 IF (MPHI(I) < MPHI(I - 1)) GOTO 5068

5067 GOTO 5078
5068 TEMP = MPHI(I)

5069 MPHI(I) = MPHI(I - 1)
5070 MPHI(I - 1) = TEMP

5071 REM .++++ Now, the fractions must move WITH the MPHI sort:

5072 FOR IV = 1 TO 3
5073 T9 = RPHI(IV,I)

5074 RPHI(IVI) = RPHI(IV,I - I)

5075. RPHI(IV,I - 1) = T9
5076 NEXT IV

5077 SWITCH = 1

5078 NEXT I

5079 GOTO 5063
5080 REM +++++ Bubble sort is now complete . . .

5090 REM +++++ Now, calculate the P(Xlsource 1), etc.

5100 FOR S = 1 TO 3

5150 P(S) = 1
5200 IM = MPHI(NG)

5210 JL = 1:TI = 1

5220 P(S) = SUM

5230 FOR I = 1 TO IM

5240 IF (TI < SUM AND P(S) < 1E30) GOTO 5800

5250 IF ((MPHI(JL) - I) < 0) GOTO 5300

5260 GOTO 5500

5300 JL = JL + 1
5400 GOTO 5250

5500 FOR 3 = JL TO NG
5510 P(S) : P(S) * RPHI(5,J) / I

5520 NEXT J

5530 NEXT I ,
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2000 REM
2010 REM ++++++++++++++++++++++++++++++++++++++++

2015 REM + SUBROUTINE MEASURED +

2020 REM ++++++++++++++++++++++++++++++++++++++++

2025 REM

2030 PRINT : PRINT "MEASURED SOURCE SPECTRUM": PRINT " -"-"
S" S:

2040 PRINT " at ";RANGE;" cms.": PRINT

2050 PRINT "enter the applicable ref. source (1,2,or3) :": PRINT

2055 PRINT " (the cumulative prob. will be calculated)"

2057 INPUT I

2060 FOR IG = 1 TO NG
* 2065 FRACT(IG) = PHI(I,IG)

2081 MPHI(IG) = FRACT(IG)

2085 IF (IG > 1) THEN MPHI(IG) = MPHI(IG) + MPHI(IG - 1)

2090 PRINT " MPHI(";IG;") =";MPHI(IG);" FRACT(IG) = ";FRACT(IG)

2100 NEXT IG

2110 RETURN

3000 REM
3010 REM +++++++++++++++++++++++++++++++++++++

3020 REM + SUBROUTINE RANDOM +
3030 REM ++++++++++++++++++++++++++++++++++++

3040 REM
3041 REM +++..+ initialize the counter array:

3042 FOR T = 1 TO 18:NC(T) = 0: NEXT T

3060 FOR I = 1 TO SUM
3065 X = RND (1)
3070 FOR IG = 1 TO NG

3080 Y = X - MPHI(IG)

3090 IF (Y < 0) THEN GOTO 3100

* 3095 NEXT IG

3100 NC(IG) = NC(IG) + 1
3110 NEXT I

3120 PRINT : PRINT " Measured source spectrum follows:": PRINT

3125 FOR 1B = 1 TO 3: PRINT CHR$ (7): NEXT IB
3130 FOR IG = 1 TO NG

3140 PRINT " channel # ";IG;" = ";NC(IG)
3150 MPHI(IG) = NC(IG)

3155 NEXT IG

3200 RETURN
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3000 REM

3010 REM +++++++++++++++++++++++++++++++++++
3020 REM + SUBROUTINE RANDOM +

3030 REM +++++++++++++++++++++++++++++..+++++++

3040 REM

3050 REM +++++ This subroutine generates random numbers

3060 REM +++++ FOLLOWING A GAUSSIAN DISTRIBUTION
3070 FOR IG = 1 TO NG
3080 Y = MPHI(IG) - 6.0

3090 FOR J = 1 TO 12

3100 X = RND (1)

3200 Y = Y + X

3210 NEXT J

3220 MPHI(IG) = Y
3230 IF (MPHI(IG) < 0) THEN MPHI(IG) = 0

3240 NEXT IG

3300 REM +++++ Echo the measured source spectrum:"
3310 PRINT CHR$ (7): PRINT CHR$ (7)

3320 PRINT "Measured source spectrum follows:": PRINT

3330 FOR IG = 1 TO NG

3335 IMPHI(IG) = INT (MPHI(IG) + 0.5)

3340 PRINT "channel ";IG;" = ";IMPHI(IG)

3350 NEXT IG

3360 PRINT

3400 RETURN

5000 REM

5010 REM +++++++++++++++++++++++++++++++++++++++

5020 REM + SUBROUTINE GAUSSIAN +

5030 REM ++++++++++++++++++++++++++++++++++++++++ r

5040 REM

5100 FOR 5 = 1 TO 3
40 5110 P(S) 1

5120 DUMMY = 1
5130 FOR IG = 1 TO NG
5140 IF (IMPHI(IG) > 0) GOTO 5200

5150 ZT = 1
5160 GOTO 5300

5200 ZT = IMPHI(IG)

5300 DUMMY = EXP ( - 0.5 * ((IMPHI(IG) - RPHI(S,IG)) / ZT 0.5) 2 2) /
2 * 3.142593 * ZT) 2 0.5

5310 P(S) = P(S) * OUMMY

5320 NEXT IG
5330 NEXT S

5440 X1 = P(1): PRINT "X1 = ";X1

5450 X2 = P(2): PRINT "X2 = ";X2

5460 X3 = P(3): PRINT "X3 = ";X3

5500 RETURN
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*5000 REM
5010 REM ........................................

5020 REM + SUBROUTINE POISSON +

5030 REM ........................................

5040 REM
5050 FOR 5= 1 TO 3

*5060 P(S) = 1
5070 FT =1

5080 DUMOY 1 +

5090 FOR 5 = 1 TO NG

5100 REM ..... calculate factorial in numerator

5110 FT = 1
5120 FOR I 1 TO MPHI(IG)

5130 FT = FT * I
5140 NEXT I

5160 IF (RPHI(S,IG) > 0) GOTO 5300

5170 TERM = 1

5180 GOTO 5400

5300 TERM = RPHI(S,IG) - MPHI(IG)

5400 DUMMY = EXP ( - RPHI(S,IG)) * TERM I FT
5410 P(S) = P(S) *DUMY

5420 NEXT IG

5430 NEXT S

5440 Xl = P(1): PRINT "Xl = ";X1

5450 X2 = P(2): PRINT "X2 = ";X2

5460 X3 = P(3): PRINT "X3 = ";X3

5500 RETURN

6000 REM

6010 REM ........................................

6020 REM + SCIENTIFIC NOTATION SUBROUTINE +

6090 REM ........................................

6100 REM

6110 REM

6120 IF NN < 0 OR NN > 8 THEN PRINT "RANGE ERR";: RETURN

6130 EX = 0: IF XX = 0 THEN MT$ = "0.": GOTO 6150

6140 MT = VAL ( STR$ ( ABS (XX))): GOSUB 6160: IF NN < 8 THEN MT =MT +
5 * 10 2 ( _ NN): GOSUB 6160

6150 PRINT MIDS ("+-",(XX < 0) + 1,1); LEFTS (MT$ + "00000000",NN + 2);"

E"; MID$ ("+-",(EX < 0) + 1,1); RIGHTS ("0" + STR$ ( ABS (EX)),2);: RETURN

6160 IF MT > = 10 THEN MT = MT / 10:EX =EX + 1: GOTO 6160

6170 IF MT < 1 THEN MT = MT *10:EX =EX - 1: GOTO 6170

6180 MTS = STR$ (MT): IF MID$ (MT$,2,1) < > "." THEN MT$ = MT$ +

6190 RETURN

7000 REM

7010 REM .++ .... .++++++.+++++++++++++.

7020 REM + DATA RETRIEVAL SUBROUTINE +
7030 REM ++ +++++++++++++ +++++++++++++++++++++ , ..-

7040 GET CS

7050 IF CS = R$ THEN RETURN ,V.
7060 HS(IG) = H$(IG) + C$

7070 GOTO 7040
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3000 REM
3010 REM .....................................

3020 REM + SUBROUTINE RANDOM +

3030 REM .....................................

3040 REM
3050 REM ..... This subroutine generates random numbers
3060 REM ..... following a Poisson distribution...

3070 FOR I = 1 TO NG
3080 Y = MPHI(IG)
3100 IF (Y < =0) GOTO 3300
3110 NUM = RNO (1)
3120 N =0
3130 T =EXP (-Y)

*3140 P=T
3150 REM ..... The 00 UNTIL loop begins here:
3160 IF (NUM <= P) GOTO 3400

3170 N = N + 1
3190 U = N
3200 T = T * Y/ U
3210 P =P +T
3220 GOTO 3160
3300 REM ..... else, N =0:
3310 N = 0
3400 REM ..... assign new value of MPRI(IG)
3410 MPHI(IG) = N
3500 NEXT IG
3510 PRINT CHRS (7): PRINT CHR$ (7)
3600 PRINT : PRINT " the measured spectrum follows:": PRINT
3610 FOR 10 = 1 TO NG
3620 PRINT " channel ";10;" = ";MPHI(10)
3630 NEXT 10
3700 RETURN
4000 REM
4010 REM ......................................

4020 REM + SUBROUTINE BAYES +

4030 REM ......................................

4040 REM
4050 REM ..... First, assign the prior oistribution values
4060 REM ..... of the three reference sources...
4070 Al = 0.3333:A2 = 0.3333:A3 = 0.3333
4080 REM ..... Call the statistics subroutine to
4090 REM ..... determine the values of P(Xisource 1), -

4100 REM ..... P (Xisource 2), and P (X~source 3).
4110 GOSUB 5000
4120 REM ..... Calculate the denominator term of Bayes' Thin.
4130 DENOM =X1 * Al + X2 * A2 + X3 * A3

4135 IF (DENOM = 0) THEN PRINT " DENOM = 0:": GOTO 4200
4140 REM +++++ calculate the likelihoods at the reference
4150 REM ..... range fromn the source.
4155 FOR IB =1 TO 3: PRINT CHR$ (7): NEXT IB ~
4160 P1 = (X1 Al) / DENOM'
4165 P2 = (X2 *A2) / DENOM
4170 P3 = (X3 A 3) / DENOM
4200 RETURN
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4P10oo0 REM ..........................................

1010 REM + SUBROUTINE REFERENCE +

1020 REM ..........................................

1030 REM
1040 PRINT :PRINT "REFERENCE SOURCES": PRINT ------------

1050 PRINT " at a range of ";RANGE;" cms"
1055 PRINT
1056 PRINT "now acquiring necessary data
1057 0$ = CHR$ (4): REM ..... (ESCAPE CHARACTER)
1058 R$ = CHR$ (13): REM ..... (RETURN CHARACTER)

1059 PRINT D$;"OPEN SOURCE DATA"

1060 PRINT D$;"READ SOURCE DATA"
1070 FOR I =1 TO 3 4

1080 REM ..... loop through all three sources
1090 FOR IC = 1 TO NG
1100 REM ..... loop through all the channels
1110 COSUB 7000
1120 RPHI(I,IG) =VAL (H$(IG))
1130 H$(IG)=
1140 NEXT IG
1150 NEXT I 4

1155 PRINT R$
1160 PRINT D$;"CLOSE SOURCE DATA"
1170 PRINT "ECHO DATA .

1180 PRINT :FOR I = 1 TO 3
1185 PRINT "SOURCE # ";I
1190 FOR IC I TO NC
1200 PRINT "channel "';IC;" =";RPHI(I,IG) 5
1210 NEXT IC

120NEXT I .%

1500 RETURN
*2000 REM

2010 REM ........................................

2015 REM + SUBROUTINE MEASURED + .

2020 REM ........................................

2025 REM
2030 PRINT: PRINT "MEASURED SOURCE SPECTRUM": PRINT "----------------------

2040 PRINT " at ";RANGE;" cms.": PRINT
2050 PRINT "enter the applicable ref. source (1,2,or3) ":PRINT

2055 PRINT " (the cumulative prob. will be calculated)"
2057 INPUT I
2060 FOR IC = 1 TO NC
2065 FRACT(IC) =RPHI(I,IG)

2081 MPHI(IC) =FRACT(IG)
2090 PRINT " MPHI(";IC;") =";r'PHI(IC)
2100 NEXT IC
2110 RETURN
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10 REM

20 REM ++++++.+++++++++++++++++++++++++++++++++
30 REM + +
40 REM + BAYES PROBABILITY ANALYSIS +

50 REM + (using the Poisson distribution) +

60 REM + By: L. Wayne Brasure +

70 REM + December 1984 +

80 REM + +
90 REM ++++++++++++++++++++++++++++++++++++++++

100 REM

110 DIM RPHI(3,18): DIM MPHI(18): DIM NC(18): DIM FRACT(18)

111 DIM P(3): DIM H$(18)
115 PRINT "random number seed = "; RND ( - 7)

118 PRINT : PRINT : HOME

120 PRINT "BAYES PROBABILITY ANALYSIS"

130 PRINT "(the multinomial version w/no background . . .

140 PRINT PRINT

150 INPUT "Enter the total number of channels => ";NG

160 INPUT "Enter the distance from the source (cms) => ";RANGE

170 REM +++++ enter the reference source spectra at this range

180 GOSUB 1000

190 REM +++++ enter the measured source spectrum I this range

200 GOSUB 2000
210 REM +++++ Calculate measured source spectrum

215 REM +++++ using POISSON random number generator

220 GOSUB 3000

230 REM +++++ Calculate the Bayesian Posterior Distribution

240 GOSUB 4000
245 IF (DENOM = 0) GOTO 360

250 REM +++++ Print out the Posterior Distribution

260 NN = 4

265 PRINT

270 PRINT " SOURCE NUMBER PROB (50URCE(i)JX)"

280 PRINT "

290 PRINT

300 PRINT " A
310 XX = P1: GOSUB 6000: PRINT

320 PRINT " B

L. 330 XX = P2: GOSUB 6000: PRINT
340 PRINT " C
350 XX = P3: GOSUB 6000: PRINT

360 PRINT : INPUT " Another run perhaps? J 1=yes => ";ANS

370 IF (ANS < > 1) GOTO 995
371 INPUT " . . . with the same setup?";ANS

372 IF (ANS = 1) GOTO 500
380 INPUT " . . . with just a new MEASURED source? => ";ANS

390 IF (ANS = 1) GOTO 190

400 PRINT " okay, from the beginning then . . .

410 GOTO 140

500 FOR IG 1= TO NG

505 MPHI(IG) = FRACT(IG)

520 NEXT IG

530 GOTO 210
995 PRINT : PRINT "Very well then, good day sir."

999 END
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using the multinomial distribution. Refer to appendix F for

details on this subroutine.

Subroutine MbLTINOMIAL.

This subroutine calculates the values of P(XIAi) using

the multinomial distribution, as discussed in chapter IV.

List of Variables.

SWITCH - on/off determining variable for the

bubble sort,

T9 - a temporary storage variable for the

bubble sorting process,

JL, TI - incremental markers for the

multinomial calculations,

SUM -number of the total fixed number of counts

available.
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